
Deep Meta-Modelling with MetaDepth

Juan de Lara1 and Esther Guerra2

1 Universidad Autónoma de Madrid (Spain), Juan.deLara@uam.es
2 Universidad Carlos III de Madrid (Spain), eguerra@inf.uc3m.es

Abstract. Meta-modelling is at the core of Model-Driven Engineering,
where it is used for language engineering and domain modelling. The
OMG’s Meta-Object Facility is the standard framework for building and
instantiating meta-models. However, in the last few years, several re-
searchers have identified limitations and rigidities in such scheme, most
notably concerning the consideration of only two meta-modelling levels
at the same time.
In this paper we present MetaDepth, a novel framework that supports
a dual linguistic/ontological instantiation and permits building systems
with an arbitrary number of meta-levels through deep meta-modelling.
The framework implements advanced modelling concepts allowing the
specification and evaluation of derived attributes and constraints across
multiple meta-levels, linguistic extensions of ontological instance models,
transactions, and hosting different constraint and action languages.

1 Introduction

Model-Driven Engineering (MDE) is a software development paradigm aiming
at speeding up development times, while increasing quality and maintainability.
MDE pursues these goals by treating models as the key assets of the process,
being no longer mere documentation but used actively to (re-)generate code,
as well as for validation and verification. Therefore, these activities demand
computer-processable models with precise syntax. In MDE, models’ syntax is
defined through a meta-model that describes the set of valid models. Hence,
meta-modelling is one of the pillars of MDE, being used for language engineering
and domain modelling, and it is also at the core of other related approaches like
product lines, feature oriented development [6] and method engineering [10].

The OMG has proposed the Meta-Object Facility (MOF) [20] as the meta-
modelling approach in the Model-Driven Architecture (MDA) [17], a particular
incarnation of MDE. MOF has been adopted as a standard by many meta-
modelling tools and frameworks, most notably by the Eclipse Modelling Frame-
work (EMF) [22]. MDA proposes a four layer, linear meta-modelling architecture
and a style of meta-modelling called strict in which an element of a meta-layer is
the instance of exactly one element at the upper meta-level. Several authors have
pointed out limitations of this approach [4, 5, 9, 10], in particular concerning the
existence of only one kind of instantiation relation and the constraint of consid-
ering only two adjacent meta-levels at the same time. This is enough to cover

2

the linguistic case, where an object is instance of exactly one class, but cannot
capture in addition ontological instantiation relations within a domain. Hence,
often engineers are forced to squeeze into two meta-modelling layers concepts
that would naturally span several layers, resulting in more complex and clut-
tered models [5]. Moreover, the lack of uniformity employed in the concepts at
the different layers in most approaches (e.g., UML associations are structurally
different from links) makes difficult to treat in a uniform way meta-models and
models, as well as to link models in different meta-levels (since “meta-” is a
relative term and meta-models are also models).

Several solutions have been proposed to these problems [5, 9, 10]. Their com-
mon idea is to increase the flexibility of the meta-modelling architecture by
allowing an arbitrary number of meta-levels. In [5] a mechanism called potency
was proposed, so that one model can control the properties of models that are
indirect instances of it. In [1, 4] a dual ontological and linguistic instantiation is
proposed, allowing an element to be a linguistic instance (e.g. be an instance of
Class in the upper linguistic meta-level) and also an instance of some domain
concept (e.g. be an instance of ProductType in the upper ontological meta-level).

This paper presents MetaDepth, a new meta-modelling environment that
allows modelling with an arbitrary number of ontological meta-levels. It im-
plements the potency concept and permits a dual ontological and linguistic in-
stantiation. It advances from other similar frameworks [2, 3] in that it supports
advanced modelling concepts, like (OCL) constraints, derived attributes and
transactions, and allows controlling whether ontological instance models can be
linguistically extended. The purpose of the framework is to permit experimenta-
tion with this alternative way of meta-modelling, but at the same time provide
a scalable, efficient system that permits its industrial use. Hence, MetaDepth
can work in an interpreted mode, where a stack of models can be kept and
work with, and then allows compilation to obtain specialized code (in the line of
JMI [23]) and optimized performance. The framework is integrated with the Ep-
silon languages [8], which permits using the Epsilon Object Language (EOL) [14]
as an action language to define behaviour for meta-models, as well as the Ep-
silon Validation Language (EVL) [15] for expressing constraints. Both EOL and
EVL are extensions of OCL. To the best of our knowledge, no framework with
similar characteristics exists nowadays. Moreover, the interplay of potency with
constraints, actions, multiplicities and association ends has not been properly
addressed in the literature, nor has been the mechanisms and benefits for con-
trolling linguistic extensions. We also aim to contribute clarifying these issues.

Paper organization. Section 2 reviews multi-level meta-modelling and the
concept of potency. Section 3 details the architecture of MetaDepth. Sec-
tion 4 presents two case studies that show the benefit of our approach. In
the first one, we define a multi-level language through a unique meta-model.
For example, one can think that in UML it is natural that Objects are in-
stances of Classes, and hence should belong to a lower meta-level (so that
an object diagram is an instance of a class diagram). Our framework natu-
rally allows this, with the benefit of a less complex language definition. In the

3

second case study, we solve the impedance mismatch arising when one needs
to relate models at different meta-levels (a complicated technical issue in two-
level frameworks such as EMF). Section 5 compares with related approaches
and Section 6 concludes. A beta version of the tool can be downloaded from
http://astreo.ii.uam.es/∼jlara/metaDepth/.

2 Deep Meta-Modelling

Some authors have pointed out the limitations of considering only two meta-
modelling levels at the same time [5, 9], either for language engineering or for
domain modelling. A common example is the item-description or the type object
pattern [16], where one needs to design a language containing both ProductTypes
(e.g. Books) and Products (e.g. the book “Moby Dick”). In the classical meta-
modelling approach, one would propose a two-level solution like the one to the
left of Fig. 1. Although this solution is valid, it has some drawbacks. First, the
user has to manually maintain the type links between each instance of Product
and its ProductType at the model level. These links are indeed a (manually
maintained) form of ontological instantiation relation for which the system does
not provide automatic conformance checks. Should we have inheritance between
types at the model level, it would have to be emulated manually too. Hence, this
solution squeezes three meta-levels into two.

ProductType

VAT: double

Product

price: double

type * Meta-model

Book: ProductType

VAT=7

CD: ProductType

VAT=10.5

«i
ns

ta
nc

e
of

»

«i
ns

ta
nc

e
of

»

price=10

Tosca: Product

price=16

type

type

«i
ns

ta
nc

e
of

»

«i
ns

ta
nc

e
of

»

Model

mobyDick: Product

ProductType

VAT : double
price : double

@2

@1

@2

Book: ProductType

mobyDick: Book

price = 10

Tosca : CD

price = 16

VAT = 7
price : double

@0

@1

@1
CD: ProductType

VAT = 10.5
price : double

@0

@1

@1

«instance of» «instance of»

@0 @0

@0 @0

«instance of» «instance of»

Model @2

Model @1

Model @0

Fig. 1. A meta-model and a model including the Type Object pattern (left). The same
system using deep meta-modelling (right), adapted from [16].

The solution to the right explicitly organizes the domain concepts into three
levels. In this way, the ProductType is declared at the top-level, the different
kinds of ProductTypes at the following meta-level, and the instances of these at
the bottom level. This solution reduces accidental complexity, as one does not
need the artificial class Product that the solution to the left introduced3. More-
3 One can still eliminate Product in the two-level solution by moving Book and CD to

the top meta-model and setting them as subclasses of ProductType. However this
solution is not valid if we need to add new kinds of ProductTypes at run time.

4

over, the instantiation of ProductTypes, Books and CDs is handled by the system
thus enabling automatic conformance checks. Note that this pattern is ubiqui-
tous in the definition of many languages, for example in UML (classes/objects),
in web modelling languages (node types/node instances), role access control lan-
guages (user types/users) and so on. We call this style of meta-modelling, which
considers more than two levels, deep or multi-level meta-modelling.

The solution meta-model to the left of Fig. 1 is able to control the at-
tributes that instances of Product (mobyDick, Tosca) have. Hence, in deep
meta-modelling we would expect the language designer to have the same level of
control over indirect instances two or more meta-levels below. For this purpose,
potency was proposed in [4] as a way to express how many times a property needs
to be instantiated down the meta-levels before we get a plain instance and hence
we have to assign it a value. The potency is a natural number that is assigned
to properties, and which gets decremented each time we go down a meta-level.
Hence, in our example, property VAT is assigned a value in the next meta-level,
and price two meta-levels below. Not only properties can have potency, but
also classes and associations. As we will see later, MetaDepth allows assigning
potency to models, constraints and derived attributes as well.

Considering the solution to the right of Fig. 1, one realizes that the elements
in the middle meta-level have both type and instance facets. This is so because
they are instances of ProductType and, as they have potency bigger than zero,
can be instantiated in its turn. The term clabject was coined in [4] to refer to
elements with a dual type/instance facet.

ProductType

VAT : double
price : double

@2

@1

@2

Book: ProductType

mobyDick: Book

price = 10

VAT = 7
price : double

@0

@1

@1
«instance of»

@0

@0

«instance of»

Clabject

potency: unbounded int

Field

Linguistic meta-model

«linguistic instance of»

«linguistic instance of»

«l
in

gu
is

tic
 in

st
an

ce
of

»
Ontological model stack

1*in
st

an
ce

s

ty
pe

*

Fig. 2. Dual classification.

The ¿instance ofÀ relation between the
elements in different meta-levels is ontological,
as this is a relation within the domain (i.e.
mobyDick is a Book and this a ProductType).
At the same time, as we have to use a modelling
language to build the models, we can argue that
Book is an instance of Class and mobyDick an
instance of Object (if such concepts exist in the
language). One way to support this duality is
to introduce another instantiation dimension,
called linguistic, and to have a meta-model that
governs the linguistic constructions used by the
models at the different meta-levels. This situation is depicted in Fig. 2, where
the linguistic meta-model contains concept Clabject with property potency to
allow its instantiation in any meta-level. An important issue is that the union of
the models in the three ontological meta-levels is a strict instance of the linguistic
meta-model.

After having introduced the basics of deep meta-modelling, there are still
missing details. For example, how could constraints be introduced in the different
ontological models? Should these and other elements like association ends be
given a potency? Finally, one may wonder whether, as elements Book and CD
have a type facet, we could declare new attributes for them, or whether we

5

could linguistically extend a certain ontological model by introducing new types,
instances of elements of the linguistic meta-model. In other words, do we demand
strictness of the ontological ¿instance ofÀ relation? Next section introduces
MetaDepth’s architecture, and discusses these issues.

3 The Architecture of MetaDepth

MetaDepth is a new meta-modelling system that we started to develop in 2008,
based on the experience we gained with AToM3 [7] in previous years. AToM3

was a Python-based tool for the definition of the syntax of visual languages by
meta-modelling and their semantics by graph transformation. MetaDepth is a
completely rebuilt kernel, written in Java, which uses the deep meta-modelling
approach presented in previous section. It can work in two ontological instanti-
ation modes: strict and extensible, as shown in Fig. 3.

L
in

g
u

is
ti

c
M

e
ta

-M
o

d
e

l

Ontological

Instance

Linguistic extension

«linguistic
instance of»

Linguistic extension

<<ontological instance of>>

«linguistic
instance of»

Ontological

Instance

…

…

top model
«linguistic

instance of»

@m

@n

@n-1

Ontological

Instance

«linguistic
instance of»

@ 0

<<ontological instance of>>

<<ontological instance of>> L
in

g
u

is
ti

c
M

e
ta

-M
o

d
e

l

Ontological

Instance

«linguistic
instance of»

<<ontological instance of>>

«linguistic
instance of»

Ontological

Instance

…

…

top model
«linguistic

instance of»

@m

@n

@n-1

Ontological

Instance

«linguistic
instance of»

@ 0

<<ontological instance of>>

<<ontological instance of>>

L
in

g
u

is
ti

c

M
e

ta
-M

o
d

e
l

«linguistic

instance of» A Petri Net

Petri Nets
«linguistic

instance of»

@1

@0

<<ontological instance of>>

Fig. 3. MetaDepth instantiation schemes: extensible ontological instantiation (left)
and strict ontological instantiation (center). Example of strict instantiation (right).

In the extensible case, each ontological instance model can be linguistically
extended using the “horizontal” instantiation provided by the linguistic meta-
model. Hence, instances of elements marked as ext can be extended with new
attributes. A complete model can also be marked as ext, which means that it
can be added new types and that all its elements (except those explicitly marked
as strict) can be extended. This situation is shown to the left of Fig. 3. In all
cases strictness is kept for the linguistic instantiation dimension.

The strict case is closer to standard meta-modelling environments, where the
top-level meta-model hard-codes all language concepts and can be subsequently
instantiated ontologically, but such instances cannot be linguistically extended.
This situation is represented in the center of Fig. 3. In this mode one could use
the highest meta-level to describe e.g. the MOF meta-model with potency 2, such
model could be ontologically instantiated to describe meta-models for languages
at potency 1, which in their turn could be instantiated to models of potency 0.

6

Hence, the strict mode is similar to most meta-modelling environments (although
without restrictions on the number of meta-levels). The right of the figure shows
a simple case where the linguistic meta-model is directly used to define a meta-
model for Petri nets, which is instantiated into a Petri net model.

Note that allowing linguistic extensions adds extra flexibility to this meta-
modelling framework in two senses. First, at any potency bigger than zero clab-
jects retain its type facet, and hence can be allowed for linguistic extension (i.e.
to define attribute types). On the other hand, it is often convenient to extend
models by allowing the introduction of new linguistic elements, e.g. to adapt
languages to particular usages, as we will see throughout the paper.

3.1 The Linguistic Meta-Model

MetaDepth’s linguistic meta-model took MOF as inspiration, but we have
modified it to accommodate an arbitrary number of meta-levels, deep instanti-
ation and potency. Fig. 4 shows a fraction of it, where the uncoloured concrete
classes are those the designer typically instantiates when building a model (i.e.
Model, Node, Edge, Field and DerivedField).

Clabject

−potency:int

−name:String

−strict:boolean

−minimum:int

−maximum:int

QualifiedElement

Classifier

Node

−isAbstract:boolean

Edge

Model

container+

children+

*

type+

instance+
*

specific+
*

general+
*

Field

−isOrdered:boolean

−isUnique:boolean

−isReadOnly:boolean

−isID:boolean

owner+

fields+

*
{ordered}

DerivedField

<< from DataTypes >>

FieldValue

* fieldValue+

0..1

memberEnd+ 2..*

<< from DataTypes >>

DerivedValue
* fieldValue+

0..1

<< from Constraints >>

Constraint

*

context+

1..*

imports+ *

*

ModelFactory

VirtualMachine models+

*

metamodel+

factory+

0..1

Fig. 4. MetaDepth’s linguistic meta-model, partially shown.

The root class Clabject takes responsibility of handling the dual type/object
facet of elements. As such, it holds a potency value, as well as links to its type
and instances. The potency can be unlimited, so that such clabject can be instan-
tiated by a clabject of arbitrary potency (included unlimited). Clabjects also
define a minimum and maximum multiplicity to control the cardinality of its in-
stances within a given context. Constraints can be attached to clabjects, have a
potency, and can specify on which events they should be evaluated (e.g. when cre-
ating or deleting the clabject). QualifiedElements are Clabjects owning some

7

field. Models, Nodes and Edges are all QualifiedElements. Classifiers are a
special kind of QualifiedElement that can form general/specific hierarchies,
and are refined into Nodes and Edges. The latter has two or more association
ends modelled as Fields. Finally, derived fields are fields of which their value is
automatically calculated.

MetaDepth’s modularity mechanism is based on the notion of Model, which
can be nested, as shown by the composite pattern used. Models are QualifiedEl-
ements and hence can own Fields and have associated Constraints. Each model
with potency bigger than zero has an associated ModelFactory, in charge of in-
stantiating the clabjects defined in such model. All working models are managed
by a VirtualMachine container, which is a singleton object.

The framework supports the usual atomic data types, like integers, floating
point numbers, strings, etc.; user-defined enumerations, as well as ordered and
unordered collections with unique or non-unique elements.

3.2 Tool Support, Compiled and Interpreted Modes

MetaDepth models can be built through the provided Java API, or through
a CommandShell and a textual syntax – similar to the Human Usable Textual
Notation (HUTN) [19] – that we have built with ANTLR [21]. Loading and
storing models is also done in this format. As an example, Listing 1 shows how the
three models in Fig. 2 are defined with the textual syntax. The top-most model
Store is assigned potency 2, which means it can be instantiated in the following
two lower meta-levels. All elements defined inside Store have the potency of the
container clabject, hence we only need to explicitly declare potencies different
from 2 (field VAT in this case). Besides we give an initial value to the fields of
ProductType. Although all elements in the listing are given an explicit name, it
is not mandatory: we can declare anonymous clabjects like Book{price=10;},
and the system assigns them a unique UUID-based identifier.

1 Model Store@2 {
2 Node ProductType {
3 VAT@1 : double = 7.5;

4 price : double = 10;

5 }
6 }

7 Store Library {
8 ProductType Book { VAT = 7; }
9 }
10 Library MyLibrary {
11 Book mobyDick { price=10; }
12 }

Listing 1: A simple MetaDepth three-model stack.

The framework is fully integrated with Epsilon, a family of languages built
on top of the Epsilon Object Language (EOL), which extends OCL with ex-
pressions permitting secondary effects such as assignments and methods. The
integration was possible because EOL communicates with the models through
a connectivity layer. Thus EOL can work with EMF models, but also with any

8

other model technology that implements the interface of this connectivity layer.
We implemented such interface and provided support to make EOL aware of the
multiple ontological levels. The solution is very practical as one can use EOL
programs e.g., to build models as in Listing 2. The listing shows a typical inter-
action with the command line interpreter. In line 1 we enter in the context of
model MyLibrary (we could have created a new model as well). In line 2 we begin
writing the EOL program (which could be loaded from a file as well). Then the
program inserts 1000 new books in the model and initializes their price.

1 context MyLibrary

::entering context MyLibrary
2 # EOL

:: entering eol execution mode

3 for (i in Sequence{1..1000}) {
4 var b: new Book;

5 b.price:=10+i/500;

6 }

Listing 2: A simple EOL program to populate a MetaDepth model.

We can use EOL not only for initializing models, but also to define its be-
haviour. As an example, Listing 6 shows a Petri net simulator we have built for
Petri net models. Moreover, we can use the rest of the Epsilon languages with
our MetaDepth models so that it is possible e.g., to transform models with the
Epsilon Transformation Language [8].

Another feature of MetaDepth concerns undoability of actions. Using the
Command pattern, all API calls are recorded in an event list, and each command
provides an appropriate undo function. This allows undo/redo of any action on
models, and permits integration with the transaction syntax of EOL.

By default, MetaDepth works in interpreted mode. This allows for flexible
modelling and is useful for rapid prototyping of languages, as one can evolve
models and meta-models at the same time. One can also create several inde-
pendent models in the same VirtualMachine (i.e. models do not need to be
related through instantiation). Once the meta-models are ready, they can be
compiled if so desired. We have built a code generator that produces special-
ized classes inheriting from the classes in the meta-model of Fig. 4, as well as
interfaces declaring getter, setter and creation methods that follow the JMI spec-
ification [23]. This enables interface compatibility with applications that handle
JMI meta-data (like those of the EMF), and improves performance as we gener-
ate optimized code which improves, e.g., constraint evaluation, objects creation
and field access. However, compiled meta-models are less flexible because they
can no longer be modified, even though all its properties are readily accessible.
The compilation we have implemented is more complex than in normal two-level
meta-modelling frameworks, since compiling a model with certain potency im-
plies compiling all direct and indirect models above in the ontological meta-level
hierarchy. The compilation also generates a specialized command shell that ini-
tializes the VirtualMachine with the compiled meta-models and allows their
instantiation.

9

3.3 Constraints and Derived Attributes

Constraints and actions can be defined using Java or EOL, nonetheless MetaDep-
th’s design makes easy to plug in additional languages. Constraints and derived
attributes have an assigned potency that governs the meta-level at which they
have to be evaluated. For example, Listing 3 modifies the running example by
adding a few constraints and a derived attribute on the top-level model.

1 Model Store@2 {
2 Node ProductType@2 {
3 VAT@1 : double = 7.5;

4 price@2 : double = 10;

5 discount@2: double = 0;

6 minVat@1 : $self.VAT>0$
7 minPrice@2: $self.price>0$

8 maxDisc@2 : $self.VAT*self.price
8 *0.01+self.price<self.discount$
9 /finalPrice@2: double =

9 $self.VAT*self.price/100
9 +self.price-self.discount$;
10 }
11 }

Listing 3: Constraints and derived attributes in MetaDepth.

The previous listing adds property discount to ProductType, declares three
constraints in lines 6, 7 and 8, and defines a derived field in line 9. Constraints are
specified between two “$” symbols, preceded by their identifier, and can be de-
clared inside the context of a clabject (as done in this case), or be declared outside
and then explicitly assigned to one or more clabjects, promoting reusability. The
constraint in line 6 has potency 1, therefore it will be evaluated in the next meta-
level below. This constraint cannot access the value of fields with bigger potency,
like price, as these may not have a value4. The default language for constraints
is EOL, but one can also use Java. For example, the equivalent Java code to the
constraint in line 6 is minVat[Java]@1: $((Integer)self.getValue("VAT"))>0$,
which is more verbose but permits interacting with external Java programs.

Constraint maxDisc is more interesting as it uses fields with potency 1 and
2. This is allowed as, from the point of view of action and constraint languages,
fields whose value is given in a type are accessed in the same way as fields whose
value is given in the instance. In our example, mobyDick interprets VAT like a
static field for which its value was set at the upper meta-level. This feature
simplifies writing constraints spawning several meta-levels.

Finally, ProductType defines the derived field finalPrice. Its declaration
is similar to a normal field, but it is preceded by a backslash, and includes a
calculation function in EOL or Java that can use fields with a lower potency. Our
current implementation calculates derived field values in a lazy way, whenever
they are accessed by some getter function. This works well in textual modelling
environments, but we foresee the need for a change propagation algorithm in
case some exogenous observer (e.g. a graphical visualization) needs the value.

4 In our case price does have a value as it has been initialized with the value 10, but
this is not the general case.

10

3.4 Controlling Linguistic Extensions

MetaDepth supports both strict and extensible ontological instantiation, the
latter being the default. Linguistic extension is interesting to permit unforeseen
extensions to Domain Specific Languages (DSLs) spawning more than one level,
as our running example. In these languages, the top-most meta-model is usually
highly generic, and hence extensions at lower levels are often required.

Listing 4 shows an extension of the running example, where an extensible
instantiation of model Store is used to define a Library. In this usage scenario
we are interested in associating an author to ProductType instances (i.e. to
Books). Thus, we add to the library a new node Author, instance of Node in the
linguistic meta-model. For the sake of illustration, Author is provided with the
constraint nonRep that forbids replicating names. This shows that allInstances
effectively returns all ontological instances of Author. Anyhow, we could have
just assigned the modifier {id} to the field name to obtain the same behaviour.
Please note that Library is still a strict instance of the linguistic meta-model.

1 Store Library {
2 ProductType Book {
3 VAT = 7;

4 title : String;
5 author : Author;

6 }
7 Node Author {
8 name :String;
9 nonRep@1:$Author.allInstances().

9 forAll(x|x<>self implies
9 x.name<>self.name)$
10 books : Book[1..*]{unique};
11 }
12 Edge writer (Book.author,

12 Author.books) {
13 year : int;
14 }
15 }

Listing 4: Linguistic extensions and associations in MetaDepth.

Authors are related to one or more Books, which is modelled through their
field books. The {unique} modifier ensures that a given Author is not related
to the same Book twice. Other supported modifiers are id (ensures uniqueness
of values among all clabjects in the same context), ordered (retains the order
of elements) and readOnly (forbids changing the value).

Associations can be provided with fields (i.e. similar to association classes) by
explicitly defining an Edge between their association ends. An example is shown
in lines 12–14 of Listing 4, where the Edge relating books and authors includes
the year in which the book was written. As in UML, declaring such Edge has
the effect of allowing the navigation from an Author to all its edges through
self.writer, while the direct navigation from an Author to its Books is done
by self.books. In the context of the writer edge, it is possible to navigate to
the Author and Books through the author and books ends.

In the example we have made reference to the ontological types Author and
Book to declare associations. However, in specific situations, it is useful to refer
to linguistic types, like Node, when defining association ends. This makes sense if

11

we want to specify that a certain association end is to be taken by any (linguistic)
instance of Node. As next section will show, this is especially useful if we want
to relate ontological models of different potency.

Listing 5 shows an example of strict meta-modelling. It is a meta-model for
Petri nets containing Places and Transitions (both inheriting from NamedElement),
as well as weighted arcs. All these elements inherit the strict modifier from their
container model. In the example, NamedElement and its children have the same
potency 1, but MetaDepth also allows clabjects in a hierarchy to define differ-
ent potencies. A clabject keeps the biggest potency of all its ancestors.

1 strict Model PetriNets@1{
2 abstract Node NamedElement { name : String{id}; }
3 Node Place : NamedElement {
4 tokens : int = 0;

5 outTrans : Transition[*] {ordered,unique};
6 inTrans : Transition[*] {ordered,unique};
7 minTokens : $self.tokens>0$
8 }
9 Node Transition : NamedElement {

10 inPlaces : Place[*] {ordered,unique};
11 outPlaces : Place[*] {ordered,unique};
12 }
13 Edge ArcPT(Place.outTrans, Transition.inPlaces){ weight : int = 1; }
14 Edge ArcTP(Transition.outPlaces, Place.inTrans){ weight : int = 1; }
15 minWeight(ArcPT, ArcTP) : $self.weight>0$
16 minPlaces : $Place.allInstances()->size()>0$
17 }

Listing 5: A meta-model for Petri nets.

The Petri net meta-model defines several constraints. In the context of the
model, minPlaces restricts nets to have at least 1 place (line 16). Most meta-
modelling approaches do not allow global constraints, but some constraints (like
minPlaces) are inherently global and do not fit in the context of any class in the
meta-model. As all MetaDepth elements have built-in cardinalities (see Fig. 4),
we can obtain the same restriction as minPlaces by replacing line 3 with “Node

Place[1..*] : NamedElement {”. Constraint minWeight is also defined globally,
but it is assigned to both kinds of arcs to enforce a positive weight (line 15).
This has the advantage of promoting reusability as the constraint does not have
to be defined twice.

For the sake of completeness, Listing 6 shows a simulator for Petri nets spec-
ified through EOL. EOL allows adding operations on meta-classes, and we have
used this feature to define the operations enabled and fire on node Transition.
The first one contains pure OCL code, which checks if the transition is enabled.
For this purpose it iterates through all incoming arcs checking that the number

12

of tokens in the pre-place is bigger or equal than the arc’s weight. Operation
fire has secondary effects: the removal and addition of tokens to the pre- and
post-places of the transition. The main simulation loop is defined in line 1, which
iterates on all transition instances while there is some enabled, and then fires it.

1 while (Transition.allInstances()->exists(t |

1 t.enabled() and t.fire())) {}
2 operation Transition enabled() : Boolean {
3 return self.ArcPT->forAll(arc | arc.inPlaces.tokens>=arc.weight);

4 }
5 operation Transition fire() : Boolean {
6 for (arc in self.ArcPT)
7 arc.inPlaces.tokens := arc.inPlaces.tokens-arc.weight;

8 for (arc in self.ArcTP)
9 arc.outPlaces.tokens := arc.outPlaces.tokens+arc.weight;

10 return true;
11 }

Listing 6: A simulator for Petri nets defined with EOL.

4 Case Studies

This section presents two case studies that show the usefulness of MetaDepth
and help illustrating some of its distinguishing features, such as the use of lin-
guistic types or the interplay of potency, multiplicities and association ends.

4.1 Defining Multi-level Languages

The first example shows the use of deep meta-modelling for defining DSLs spawn-
ing more than one meta-level. This is the case of many languages that implement
the Type Object pattern. For example, UML defines class and object diagrams
as two different structural diagrams. However, UML defines both in the same
meta-level, with the drawback that one has to maintain explicit relations between
objects and their classifiers and ensure that they remain consistent. Instead, one
can use deep meta-modelling to simplify the language definition and to automate
the maintenance of consistency between classes and objects.

Listing 7 shows how a simple language containing class and object diagrams
is defined in MetaDepth. The idea is specifying a three-level meta-modelling
architecture where the top-most level contains the definition of class diagrams
and potency 2 (Model ClassDiagram in Listing 7). In this way, in the next meta-
level we can build class diagrams (e.g., Zoo in Listing 8), and in the bottom meta-
level we can build object diagrams and the very meta-modelling infrastructure
handles the type checking w.r.t. the class diagram that the object diagrams

13

instantiate. In this way, a stack of two languages is defined with just the model
in Listing 7. This model is strict to avoid the creation of new linguistic types in
class and object diagrams, and permit only the creation of Classes and Assocs.
On the contrary classes and associations are extensible to allow their instances
to define new fields in them. Node Class contains field isAbstract to designate
whether the class is abstract or not, and constraint noAbsObjects ensures that
object diagrams (two levels below) do not contain objects whose class is abstract.

1 strict Model ClassDiagram@2 {
2 ext Node Class {
3 isAbstract@1 : boolean = false;
4 in : Class[*];

5 out : Class[*];

6 noAbsObjects : $self.isAbstract=false$
7 }
8 ext Edge Assoc(Class.out,Class.in);

9 }

Listing 7: A meta-model for class and object diagrams (meta-level 2).

Listing 8 shows an instance of ClassDiagram, namely a class diagram named
Zoo which declares two classes and one association. Class Person declares one
field (name) and one association end (pet). The field is a linguistic extension of
Person (i.e. it is not an instance of any feature in the upper ontological meta-
level), whereas the association end is an ontological instance of the association
end out defined for Class in the upper meta-level (indicated as a modifier after
its declaration). The listing also shows an instance of the defined class diagram
called myZoo.

1 ClassDiagram Zoo {
2 Class Person {
3 name : String {id};
4 pet : Animal[*] {out};
5 }
6 Class Animal {
7 kind : String {id};
8 owner : Person[1..*] {in};
9 }

10 Assoc hasPet (Person.pet,

11 Animal.owner)

12 { since : int; }
13 }
14 Zoo myZoo {
15 Person p{ name="Juan"; }
16 Animal a{ kind="monkey"; }
17 hasPet(p,a){since=2010;}
18 }

Listing 8: A class and an object diagram (meta-levels 1 and 0, respectively).

Coming back to our language specification in Listing 8, we can see that fields
in and out have an (unbounded) multiplicity. This multiplicity constrains the

14

meta-level immediately below, and hence one can have an unbounded number of
instances of them in a class diagram. In their turn, these instances can declare
their own multiplicity, which affects their instantiation in object diagrams. Any-
how in and out have potency 2 and are also available in object diagrams, storing
the content of all their instances. For example, p.out evaluates to [a] because
p.pet evaluates to [a]. This shows that the instantiation semantics for fields is
coherent with the way of handling indirect instances of all other elements, like
Nodes and Edges, as e.g., both p and a are indirect instances of Class.

4.2 Relating Models at Different Meta-levels

Next we illustrate how to relate models at different meta-levels in MetaDepth.
This is of practical importance as, in standard approaches like in EMF, models
cannot be meta-models at the same time. Models can treated as meta-models
by passing through a transformation called promotion, thus making difficult to
link elements of models with elements of meta-models. As an example we show a
multi-level language to define the graphical concrete syntax of meta-models. The
purpose of the example is neither showing advanced concrete syntax concepts,
nor discussing how instances would be graphically rendered, but only show how
models can be naturally put in relation with meta-models. In order to keep the
example simple we restrict to the visual representation of Nodes as rectangles.

1 Model Graphics@2 {
2 abstract Node Figure {
3 x: int;
4 y: int;
5 rotation : double = 0;
6 scale : double = 1;
7 refsTo : Node;

8 }
9 Node Rectangle : Figure {
10 width@1 : int;

11 height@1 : int;

12 }
13 }

Listing 9: The Graphics meta-model.

Graphics

definition

<<linked to>>

(refsToPerson)

@2

Graphics

instance

@1

Rendering
@0

<<ontological

instance of>>

<<ontological

instance of>>

Language

Model
(somePeople)

@n-1

<<ontological

instance of>>

<<linked to>>

(refsToPerson@0)

<<ontological

instance of>>

Linguistic

meta-model

<<linked to>>

(refsTo)

<<ontological

instance of>>

Language

meta-model
(People)

@n

<<linguistc

instance of>>

Fig. 5. Scheme of the example.

Listing 9 shows the meta-model for the
two-level language called Graphics. When in-
stantiated in the next meta-level it allows
defining visualizations for a meta-model M.
Then, by instantiating it again we obtain in-
stances with the rendering information about
the instances of M. This situation is depicted
in Fig. 5, which shows that Graphics models
are associated to the definition of a language,
and the rendering information to models of
this language. The Graphics definition con-
tains an abstract clabject Figure with fields x and y that store the absolute

15

position of instances of figures two meta-levels below, as well as its rotation and
scaling. Figures also contain field refersTo to point to the Node that the figure
is representing. A real-world model for concrete syntax would include several
types of figures (circles, text, etc.) that could be composed to form the visual
concrete syntax of a Node. In our case, for space constraints, we consider just
Rectangles which can be configured with their dimension.

Then, consider the simple language defined by the meta-model People in
Listing 10. We can instantiate the Graphics meta-model to define a visual rep-
resentation for Person in the language meta-model. Moreover, since meta-model
Graphics is generic, we can also define a visualization for the class diagram Zoo
in Listing 8 by just replacing “People” by “Zoo” in line 4. This shows the flex-
ibility of MetaDepth to relate models at different potencies and meta-levels,
and the advantages of treating uniformly models at different meta-levels.

1 Model People@1 {
2 Node Person { name:String; }
3 }
4 Graphics CS imports People {
5 Rectangle iconPerson {

6 width = 15;

7 height = 10;

8 refsToPerson: Person{refsTo};
9 }
10 }

Listing 10: Defining the concrete syntax for a language meta-model.

Finally, we can instantiate the People meta-model and its associated concrete
syntax as shown in Listing 11.

1 People somePeople {
2 Person e { name = "Esther"; }
3 }
4 CS cs1 imports somePeople {
5 iconPerson {

6 x = 10; rotation = 90;

7 y = 10; scale = .5;

8 refsToPerson = e;

9 }
10 }

Listing 11: Instantiating the meta-model and its concrete syntax.

5 Related Work

There are two main lines of related research: those works following a MOF-like
way of meta-modelling, where only two adjacent levels are considered at the
same time, and those following a deep meta-modelling approach.

Regarding the first group, MOF [20] is the OMG’s language to specify meta-
models and the most adopted approach in practice. The MOF specification is
divided in two parts: a basic one called Essential MOF (EMOF), and a more

16

advanced one called Complete MOF (CMOF). The specification claims that it
can be used with as many meta-levels as users demands. However there are
conceptual problems, e.g. when one needs to introduce data types instances, as
the basic data types would have to be replicated across the different meta-levels.
Moreover, current implementations only allow handling two levels at the same
time. Even though MOF specifies a set of reflective services, the specification
neglects that considering three or more meta-levels at the same time requires
some entities to simultaneously have both a type and an object facets. The
main implementation of MOF is integrated within EMF [22] and is called Ecore.
It forces a tree-based edition of models, and only supports EMOF, therefore
lacking useful constructs like a proper concept of association enabling e.g. the
definition of associative classes. Neither EMOF nor CMOF specify how to define
constraints or actions to calculate derived attributes.

Many current meta-modelling research efforts revolve around MOF. For ex-
ample, KM3 [12] is a DSL to specify meta-models based on MOF. KM3 has a
textual front-end for meta-modelling frameworks, and as such can be compared
to the textual notation we have developed for MetaDepth, but does not in-
troduce new meta-modelling concepts. Kermeta [13] is another textual language
whose purpose is to specify behaviours for EMF meta-models. Hence, its role for
EMF meta-models is equivalent to our use of EOL to specify behaviour.

Concerning deep meta-modelling, several efforts can be recently found di-
rected to a practical test of the seminal ideas of Atkinson and Kühne [4]. For
example, DeepJava [16] is an extension of Java with the concept of potency
and, as such, it cannot be considered a meta-modelling framework. It provides
methods with potency, but has to use special keywords to navigate up the type
hierarchy in order to find attribute values. On the contrary, our constraints and
computations for derived attributes can access type fields in a uniform way. This
is similar to considering that a type attribute value is like a static attribute with
respect to an instance, and has the advantage that one does not need to know
exactly how many meta-levels up the given field was given a value, and facilitates
the integration with constraint and action languages.

The work in [3] is another recent proposal for deep meta-modelling. The tool
is currently being developed, based on Ecore. They consider multi-level con-
straints, and propose extending OCL to cope with multiple ontological meta-
levels. This is similar to our approach, but we assign potency to constraints,
making them easier to define. This is so because potency layers constraints,
and hence they do not have to, e.g., explicitly invoke allInstances() a prede-
fined number of times, it is enough to implement in the OCL interpreter the
ability to recognise indirect ontological instances of clabjects, and to interpret
fields of ontological types similar to static attributes in Java. Another difference
concerns relations, as they do not consider association ends, but add this infor-
mation inside the relation class itself. The main motivation for this is graphical
visualization in concrete syntax and uniformity of structure between ontologi-
cal meta-levels. On the contrary, the design of our framework was not driven
by concrete syntax issues, as we foresee building systems supporting graphical

17

syntax as well as more sophisticated textual syntaxes, probably posing different
challenges. We retain association ends (similar to MOF and UML), as this allows
us to reuse the multiplicity semantics of structural features. Most importantly,
it makes easier the practical integration with navigation languages like OCL. We
also agree on the importance of uniformity of relations at the different levels,
and hence we retain association ends (i.e. fields) at all levels. Finally, they do
not consider linguistic extensions, transactions, derived attributes, nor an action
language, whereas we can use the Epsilon languages, which enable manipulation
and transformation of models. Our dual working scheme interpreted/compiled
allows rapid prototyping of languages on the one hand, and enables the genera-
tion of stand-alone, efficient domain specific tools on the other hand.

Nivel [2] is a deep meta-modelling framework based on the weighted con-
straint rule language (WCRL). It implements the concept of potency and the
dual linguistic/ontological classification. It brings some interesting ideas from
conceptual modelling, like the possibility of several classes to implement an as-
sociation role. Nivel’s semantics is given by its translation into WCRL, which
allows some form of automated reasoning, but the kind of reasoning and its use-
fulness was not shown in [2]. The language lacks constraints and action languages
(except WCRL itself), which hinders its use in practical MDE.

Other works that have influenced MetaDepth include Amulet [18], whose
prototype/instance concept is similar to our linguistic clabject extensions.

6 Conclusions and Future Work

In this paper we have presented MetaDepth, a novel framework for deep meta-
modelling. The tool supports the concept of potency, allowing an arbitrary num-
ber of ontological meta-levels. It provides advanced features like multi-level con-
straints, derived attributes and linguistic extensions at lower meta-levels. The
framework can work either in interpreted or compiled modes, favouring flexibil-
ity or efficiency. The current implementation offers a textual syntax, inspired
by HUTN, and is integrated with the Epsilon languages. In particular, we have
shown the use of EOL for specifying actions and EVL for constraints.

After more than one year of development, we are excited about the possi-
bilities opened by MetaDepth, and we will continue to improve it in the near
future. For example, we would like to allow the framework to run in client/server
mode, so that the kernel can be accessed through web services. We would also
like to build a system to support a graphical concrete syntax, in the spirit of the
old AToM3 [7], but allowing interaction through the web navigator. Even though
we can use ETL now, the plan is to incorporate a formal model transformation
language into it, and for this purpose we are working on an implementation of
our pattern-based transformation language [11]. It could be interesting to study
the implications of deep meta-modelling for model transformation, and for this
we would need a formalization of the framework. Finally, we are also enthusiastic
about deep meta-modelling and the new possibilities it offers for MDE. We are

18

currently exploring idioms, and identifying good practices and patterns for deep
meta-modelling and multi-level language engineering.

References

1. J. M. Álvarez, A. Evans, and P. Sammut. Mapping between levels in the metamodel
architecture. In UML’01, volume 2185 of LNCS, pages 34–46. Springer, 2001.

2. T. Asikainen and T. Männistö. Nivel: a metamodelling language with a formal
semantics. SoSyM, 8(4), 2009.

3. C. Atkinson, M. Gutheil, and B. Kennel. A flexible infrastructure for multilevel
language engineering. IEEE Trans. Soft. Eng., 35(6):742–755, 2009.

4. C. Atkinson and T. Kühne. Rearchitecting the UML infrastructure. ACM Trans.
Model. Comput. Simul., 12(4):290–321, 2002.

5. C. Atkinson and T. Kühne. Reducing accidental complexity in domain models.
SoSyM, 7(3):345–359, 2008.

6. D. S. Batory. Multilevel models in model-driven engineering, product lines, and
metaprogramming. IBM Systems Journal, 45(3):527–540, 2006.

7. J. de Lara and H. Vangheluwe. AToM3: A tool for multi-formalism and meta-
modelling. In FASE’02, volume 2306 of LNCS, pages 174–188. Springer, 2002.

8. Epsilon. http://www.eclipse.org/gmt/epsilon/, 2009.
9. C. González-Pérez and B. Henderson-Sellers. A powertype-based metamodelling

framework. SoSyM, 5(1):72–90, 2006.
10. C. González-Pérez and B. Henderson-Sellers. Metamodelling for Software Engi-

neering. Wiley, 2008.
11. E. Guerra, J. de Lara, and F. Orejas. Pattern-based model-to-model transforma-

tion: Handling attribute conditions. In ICMT’09, volume 5563 of LNCS, pages
83–99. Springer, 2009.

12. F. Jouault and J. Bézivin. KM3: A DSL for metamodel specification. In
FMOODS’06, volume 4037 of LNCS, pages 171–185. Springer, 2006.

13. Kermeta. http://www.kermeta.org/.
14. D. S. Kolovos, R. F. Paige, and F. Polack. The Epsilon Object Language (EOL).

In ECMDA-FA’06, volume 4066 of LNCS, pages 128–142. Springer, 2006.
15. D. S. Kolovos, R. F. Paige, and F. Polack. On the evolution of OCL for capturing

structural constraints in modelling languages. In Rigorous Methods for Software
Construction and Analysis, 2007.

16. T. Kühne and D. Schreiber. Can programming be liberated from the two-level
style? – Multi-level programming with DeepJava. In OOPSLA’07, pages 229–244.
ACM, 2007.

17. S. J. Mellor, K. Scott, A. Uhl, and D. Weise. MDA Distilled. Addison-Wesley
Object Technology Series, 2004.

18. B. Myers, R. McDaniel, R. Miller, A. Ferrency, A. Faulring, B. Kyle, A. Mickish,
A. Klimovitski, and P. Doane. The Amulet environment: new models for effective
user interface software development. IEEE Trans. Soft. Eng., 23(6):347–365, 1997.

19. OMG. HUTN. http://www.omg.org/cgi-bin/doc?formal/2004-08-01, 2009.
20. OMG. MOF 2.0. http://www.omg.org/spec/MOF/2.0/, 2009.
21. T. Parr. ANTLR. http://www.antlr.org, 2010.
22. D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks. EMF: Eclipse Mod-

eling Framework, 2nd Edition. Addison-Wesley Professional, 2008. See also
http://www.eclipse.org/modeling/emf/.

23. Sun. Java Metadata Interface. http://java.sun.com/products/jmi/index.jsp.

