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Meta-modelling is one of the pillars of Model-Driven Engineering (MDE), where it
is used for language engineering and domain modelling. Even though the current
trend is the use of two-level meta-modelling frameworks, several researchers have
pointed out limitations of this scheme for some scenarios and suggested a meta-
modelling approach with an arbitrary number of meta-levels in order to obtain
more flexible and simpler system descriptions. Unfortunately, such multi-level
meta-modelling systems are still in their infancy, lacking for example, integration
with model manipulation languages, a characterization of different possibilities
for instantiation and inheritance, and primitives for interconnecting multi-level

languages in a flexible way.
In this paper, we propose a number of extensions to multi-level (also called
deep) meta-modelling, based on the needs raised by its use for practical MDE.
In particular, we discuss on the issues related to code generation from deep
languages, the benefits of allowing inheritance at every meta-level, and patterns
and techniques for a fine-grain control of the meta-level of elements. Finally, we
provide primitives to control the impedance mismatch when connecting models

at different meta-levels.
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1. INTRODUCTION

Model-Driven Engineering (MDE) [1] is a Software
Engineering paradigm that aims for the automated
development of software systems by the use of models
and their successive refinement into code. Hence, it
promotes the use of models as the primary assets in the
development, where they are used to specify, simulate,
analyse, generate and maintain applications [2].
Models can be expressed in general-purpose modelling
languages like the UML [3], but frequently they are built
using Domain Specific Languages (DSLs) especially
tailored to a specific area of concern. In MDE, DSLs are
defined through meta-models, which are models that
describe the abstract syntax and main concepts of the
DSL.
The OMG has proposed the Meta Object Facility

(MOF) [4] as the standard language to describe meta-
models, and some popular implementations exist, most
notably the Eclipse Modeling Framework (EMF) [5].
In this approach, a system is described using two
meta-levels: a meta-model defining allowed types, and
a model instantiating these types. While the meta-

model is built by the language designer, models are
built by the final users. However, this two-level
approach has limitations when the meta-model includes
the type-object pattern [6], which requires an explicit
modelling of types and their instances at the same
meta-level. Occurrences of this pattern are found in
general-purpose languages like the UML, where both
classes and objects are defined at the same meta-
level, as well as in domain-specific ones like web
modelling languages (node types/node instances), role
access control languages (user types/users), process
modelling languages (task definition/task enactment,
work product kind/work product) or e-commerce
models (product type/product instance). When this
pattern appears, a description using more than two
meta-levels yields simpler models [7]. This organization
permits placing types in a meta-level above their
instances. We call a language deep if it permits its
instantiation at more than one meta-level.

Although some works have discussed different aspects
of multi-level (also called deep) meta-modelling [8, 9,
10, 11, 12], there is still a lack of practical experience
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in its application to real case studies involving MDE
processes, and on the technical needs arising from its
use in large, complex systems. Here we report on our
work and experience in this direction and propose some
extensions that we incorporated to a multi-level meta-
modelling framework in order to enable its use in more
complex scenarios in a simpler way.
As deep languages can be instantiated at more than

one meta-level, and not just once, our first extension
aims at improving the compositionality of DSLs with
heterogeneous meta depth (i.e. with different number
of meta-levels). This is of paramount importance
since complex systems are hardly ever described with
a single monolithic model, but using several languages
and models to describe the system from different
perspectives. However, an impedance mismatch can
arise when connecting languages that span a different
number of meta-levels, or models that belong to
different meta-levels. To solve this problem we propose
the notion of deep reference, which is a reference to
an instance of a type at a certain lower meta-level,
not necessarily the immediate one. This is useful
to build highly extensible deep languages, where it
is not possible to foresee the complete collection of
direct instances of a given type, and hence they cannot
be referenced explicitly. Additionally, we propose
a compact notation to avoid the manual “identity”
instantiation of types at every meta-level, useful when
conceptually a type needs to “skip” one meta-level.
Other of our proposals aims at enriching and making

modelling uniform at the different meta-levels by
providing inheritance mechanisms at every meta-level.
At the top-most meta-level, the elements are pure
types (i.e. they do not have an instance facet, so
they are similar to classes in standard meta-modelling)
and hence inheritance works as in most object-oriented
languages: the fields with type facet are inherited from
parent to children elements. At the bottom meta-level,
the elements are pure instances (similar to objects in
standard meta-modelling) and inheritance is used to
obtain default attribute values from the parent, which
can be overridden by the children. At intermediate
meta-levels (where elements have both class and object
facets), inheritance has the combined effect for both
types and instances.
The ideas presented in this paper emerged in the

daily work with our multi-level meta-modelling tool
MetaDepth [12], and have been implemented in this
tool recently. The tool supports the definition of
characteristics of instances of a given type beyond the
immediate meta-level – so called deep characterization
– through the concept of potency proposed by Atkinson
and Kühne [6]. The potency is a number attached
to the model elements to control the characteristics of
their direct and indirect instances (instead of only the
direct ones as in standard meta-modelling). In this way,
MetaDepth allows the definition of deep languages in
which the user of the language is able to work with

several meta-levels (and not only with one meta-level
as in standard DSLs), thus enabling Domain Specific
Meta-Modelling [13]. The tool integrates several model
management languages of the Epsilon family [14] for
an effective support of MDE. In particular, it is
possible to define constraints and model manipulations
with the Epsilon Object Language [15] (EOL), and
build code generators by using the Epsilon Generation
Language [16] (EGL). In this way, we realize the MDE
vision of generating the final application from models,
but with the peculiarity that we are not restricted to
two meta-levels only. We will discuss the implications
of the availability of multiple meta-levels for MDE
throughout the paper.

The paper illustrates the different proposals through
a non-trivial running example consisting on the au-
tomatic generation of web-based collaborative appli-
cations using MDE. For this purpose, we have used
MetaDepth to design a family of (deep) languages en-
abling the description of the application presentation,
the allowed users and their roles, and the connection
of predefined, heterogeneous Web 2.0 components in
a mashup-like style. In this domain, the type-object
pattern appeared several times (component types/in-
stances, table data types/values), and hence we found
advantages in the use of a description using more than
two meta-levels. Please note that for many other do-
mains and scenarios, a description using two meta-levels
is satisfactory.

The rest of the paper is organized as follows.
We first present our running example in Section 2.
Next, Section 3 introduces multi-level meta-modelling
and deep languages, whereas Section 4 presents
MetaDepth. Section 5 discusses different issues
regarding the semantics of potency that we encountered
when applying deep modelling to our running example,
and the extensions we propose. Section 6 presents
further extensions to make inheritance uniform at
different meta-levels. Section 7 summarizes benefits
and limitations of our approach, proposes patterns
to organize the different elements of a deep language
across meta-levels, and discusses lessons learnt. Finally,
Section 8 compares with related work and Section 9
concludes the paper.

2. RUNNING EXAMPLE: MDE FOR COL-
LABORATIVE WEB APPLICATIONS

Collaboration-enabled tools are becoming the norm in
computer science nowadays, and are pervasive in many
facets of our daily life. Popular examples include
Facebook, Google+ and Flickr for leisure, as well as
applications supporting collaboration in design, project
management and learning. The term groupware [17, 18]
collectively refers to software supporting the actions of
people involved in a common task, for the purpose of
reaching some goal.

Web 2.0 technologies offer an ideal technological
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FIGURE 1: Applying MDE to the generation of tailor-made collaborative web applications

space to develop groupware applications. However,
the heterogeneity of such technologies (which include
HTML, RSS, Flash, AJAX and JavaScript), their
continuous change and the ever-growing availability
of new services and APIs make Web 2.0 applications
difficult to build and maintain. This is so as developers
need to be proficient in all these technologies for
their combined use in the construction of this kind
of applications. Moreover, the increasing need for a
rapid release of tailor-made collaborative applications
for specific communities of users makes urgent the
development of methods and techniques for their
automated construction.

In the context of the “Go-Lite” and “e-Madrid”
projects, we are investigating ways to generate tailor-
made collaborative web applications using MDE. For
this purpose, we are developing a number of DSLs
to describe different aspects of an application such
as its users and their roles, its component-based
functionality, and the style and layout of the rendered
components. Our rationale is that such languages could
be used by non-computer scientists and people without
expertise in Web 2.0 technologies, hence facilitating
the construction of web applications also by end-users.
Then, from models of these aspects, a code generator
synthesizes the final application. Figure 1 shows the
general working scheme of the approach.

The application functionality is realized through
a repository of predefined components which use
heterogeneous technologies like Flash, Java Applets and
JavaScript, and we also make use of the increasingly
number of web-based services offered by companies
like Google and Facebook. Nonetheless, in order
to overcome their heterogeneity and facilitate their
integration, we have abstracted and encapsulated these
components and services in the form of models. In this

way, our DSLs provide a uniform view of heterogeneous
technologies, so that developers do not need to be
experts in the low level technicalities and service APIs,
but can describe the applications using higher-level
models.

As an example, Figure 1 shows a generated
application which gathers some Google components
from different sources: a map, a table with the
coordinates of the locations in the map, a calendar, and
a table with the events contained in the calendar. The
components communicate by exchanging data, whose
format needs to be defined in a data view.

Our approach involves the following four roles in
the process: language designer (label 1), technology
expert (label 2), domain expert (label 3) and final
user (label 4). The language designer is in charge of
defining the family of DSLs. The technology expert
builds component models that encapsulate technologies
like Google maps, or APIs from specific services and
vendors like Facebook. The domain expert models web
applications for specific user communities by selecting,
instantiating and connecting the predefined component
models in the repository. Finally, a code generator
synthesizes the web application from these models, to
be used by the final users.

A challenge in this approach is a clean separation
between component types and instances, enabling the
addition of new component types to the repository
as they become available, without having to change
the DSL meta-model each time a component is
added. Hence, first we need to define component
types encapsulating widgets like the Google calendar,
the Google map or several types of data visualizers.
Each such component type needs to define its own
set of parameter types. Then, such component types
need to be instantiated giving explicit values to their
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parameters, like the owner of the calendar or the
locations to be shown in the map. As shown in Figure 1,
these two tasks – encapsulating components in the
form of a model (i.e. defining a component type),
and using them in order to build applications – are
normally realized by different people. Moreover, the
architecture needs to be extensible as we need to be
able to add new component types to our repository
at any time. Currently, we have 33 components
in the repository including components for polling,
web searching, educational simulations, file storage,
RSS readers, forms, chats, Facebook posts, Flickr
queries and data visualization. However, this number
is growing as we find new services and APIs to
encapsulate.
The modelling of component types and instances is an

example of the type-object pattern. Another occurrence
of this pattern arises when modelling the data to be
used by the application, as there is the need to define
data schemas (e.g. describing the structure of events
in a calendar or geo-positioned locations), and then to
instantiate them.
As we will show in the next section, resorting to a

two meta-level style to define our DSLs implies mixing
in the same meta-level both component types and their
instances, as well as data schemas and data values.
This makes intricate the automatic construction of
instances from types, and the conformance testing of
instances with respect to types. Instead, we use an
alternative solution that separates types and instances
in different meta-levels. However, we realized that
current multi-level meta-modelling techniques were not
capable of handling this complex scenario. Therefore,
the realization of this solution raises the need for
advanced, novel multi-level modelling techniques and
patterns, which we will present in Sections 5 and 6.

3. MULTI-LEVEL META-MODELLING
AND DEEP LANGUAGES

Meta-modelling involves building models that describe
other models. One of its most common uses
is to describe the abstract syntax of modelling
languages [19], so that the meta-model defines the
set of models considered valid in the language. A
prominent approach to meta-modelling is the OMG’s
strict four-level architecture. Strictness refers to the
fact that an element at a certain meta-level has to be
the instance of exactly one type at the meta-level above.
In this architecture, only two adjacent meta-levels are
available at a time: the upper one contains meta-
models (e.g. describing a language) and the lower one
contains instances of these meta-models. While meta-
models are built by language developers, models are
built by the final users of the language (i.e. the domain
experts). This is the mainstream approach nowadays,
implemented by frameworks like the EMF [5]. In the
following, we refer to this approach as the two-level

approach.
Even though the two-level approach is the most

used one nowadays, some authors have pointed out
its limitations when it is used to build languages that
incorporate the “type-object” pattern, i.e. that define
in the same meta-level a type and its instances [7, 20].

For instance, our case study requires a language
for components allowing the definition of component
types, which are then instantiated and connected
through connectors [21]. The definition of part of
this language using two meta-levels is shown in the
upper part of Figure 2. The language meta-model
defines two types of components, JavaScriptType and
AppletType, together with their instances, JavaScript
and Applet. This is an occurrence of the type-
object pattern, where the instantiation relation of each
component instance with its type is modelled through
the association type. Moreover, component types can
declare features, to which the component instances
should assign a value through the corresponding slot.
Again, this is another occurrence of the type-object
pattern.

ComponentType

ident: String

ComponentInstance

name: String

type *

Meta-
model

«instance of» Model

JavaScript
Type

JavaScript
AppletType

codeBase: String

«instance of»«instance of»«instance of»

Applet
params: String[*]

Feature
name: String
type: String

Slot

value: String

props
slots*

*

*slottype

Map: JavaScriptType

ident=“GoogleMaps”

Plot: AppletType
ident=“FunctionPlot”
codeBase=“...”

«instance of»

name=“UAMCampus”

sinPlot: Applet
name=“SinPlot”
params={“A”,”A*sin(A*x)”}

type

type

Model

uam: JavaScript

«instance of»«instance of»«instance of»

scroll:Feature
name=“scroll”
type=“Boolean”

value=“true”

uamsc: Slot
slottype

props slots

FIGURE 2: A two-level language for components

Below, the figure shows a model example with two
component types (Plot and Map) and one instance of
each (sinPlot and uam). Thus, the steps to create a cor-
rect component instance are the following: instantiating
a subclass of ComponentInstance, selecting its correct
ComponentType (Plot or Map in the figure), manually
creating one slot in the component instance for each fea-
ture declared in the component type, linking the slots to
the features through slottype links, and assigning the
slots a valid value according to the data type declared in
the feature. For example, in the model, the Map compo-
nent type declares a feature scroll, and therefore the
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component instance uam has been provided with a slot
to assign this feature a value. Thus, the domain expert
has to instantiate the appropriate slots manually, which
is time-consuming and error-prone. Please note that the
language meta-model could include OCL constraints to
automatically check the correctness of the typing links
(type and slottype), but not for the automatic con-
struction of correct component instances declaring ap-
propriate slots for the feature values. To automate such
a creation mechanism, a two-level meta-modelling ar-
chitecture should be extended with extra functionality.
Another limitation of this two-level solution is

that it is not possible to define common features
and behaviours for several component types at the
model level, e.g. a DataVisualizer JavaScriptType

component that is specialized by several children like
PieChartVisualizer and BarDiagramVisualizer. Such
an inheritance mechanism is only available at the meta-
model level, and therefore it should be implemented
ad-hoc at the model level. Moreover, the models of
components would become further involved should we
need to assign cardinalities to the features declared
in the component types. For instance, although it is
not shown in Figure 2, the GoogleMaps component
type declares as a feature zero or more geo-positions
to be visualized in the map, which should be assigned
a value in the component instances. Altogether, the
two meta-level solution for our components language
becomes convoluted and hardly usable, or requires
many ad-hoc functionalities to be built by hand. In
the limit, the needed functionality amounts to building
a complete type system emulating the instantiation
and type checking mechanisms that standard meta-
modelling systems offer between two adjacent meta-
levels.
Instead, one can organize the language in a simpler

way using three meta-levels, as Figure 3 shows. The
resulting models are simpler if we take the size of the
models as a measure of their complexity. Thus, the
same system is modelled with 7 objects in the three-
level solution, but with 14 objects and 9 links in the
two-level solution (see Figure 2).
In this multi-level architecture, each element has a

potency [6] indicated after “@”. If an element does
not explicitly indicate a potency, then it inherits the
potency from its container element, and ultimately
from the model where it belongs. The potency is
a mechanism for the deep characterization of indirect
instances of elements, that is, it helps in setting the
characteristics of direct and indirect instances of a given
element. It is a natural number that indicates in how
many consecutive meta-levels a given element can be
subsequently instantiated. If it is assigned to a field,
then this can be given a value only in the deepest
meta-level allowed for the field. At each deeper meta-
level, the potency of the instances decreases in one unit.
When it reaches zero, we obtain a pure instance that
cannot be instantiated further.

Model

«instance of» Model

@2Component
ident: String
name:String

JavaScript

«instance of»

@1

@1

Applet
codeBase: String
params:String[*]

@1

name=“UAMCampus”
scroll = true

sinPlot: Plot
name=“SinPlot”
params={“A”,”A*sin(A*x)”}

uam: Map

ident=“GoogleMaps”
scroll: boolean

ident=“FunctionPlot”
codeBase=“...”

«instance of» «instance of» Model @0

Map: JavaScript Plot: Applet

FIGURE 3: A three-level language for components

In the three-level architecture shown in Figure 3,
the top compartment contains the definition of our
language for components. Its (meta-)model has potency
2, which means that all its elements can be instantiated
in the following two meta-levels, except the fields with
potency 1, which can be instantiated only in the
following meta-level. This mechanism is very useful
in the design of deep languages, as the designer can
express in the top meta-level the attributes (e.g. name)
that indirect instances (uam and sinPlot) should have.
For example, the Applet type has potency 2, and
its instance Plot in the next meta-level has potency
1. When Plot is created, all fields declared in its
type are automatically instantiated as well (ident,
name, codeBase and params) and their potency gets
decreased in one unit. Then, it is possible to assign a
value to those with potency 0 (ident and codeBase),
whereas those with potency bigger than 0 are usually
kept invisible to the user. As Plot has potency 1, it
can be instantiated in the next meta-level, as sinPlot
shows. When sinPlot is created, all fields declared in
its type with potency bigger than 0 are automatically
instantiated (name and params). These two fields
receive potency 0 at this meta-level, and therefore they
can be given a value. sinPlot has potency 0 and hence
cannot be instantiated further.

It can be observed that, as we can instantiate compo-
nent types like Map or Plot, it is no longer necessary to
include the meta-class ComponentInstance and its sub-
classes in the language definition (like in Figure 2). This
is so as each component instance (uam and sinPlot) is
an instance of an instance of Component (i.e. instance
of Map and Plot respectively). In this way, the type re-
lation that we used in the two-level solution is no longer
needed, as the usual instance of relation between meta-
levels takes care of the typing. As a consequence, in the
three meta-level architecture, less modelling elements
are needed to model the same system. Moreover, there
is no need to build by hand extra machinery to deal with
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instantiation and type checking in the same meta-level,
because such mechanisms are built-in in the system and
available across meta-levels.
In a multi-level setting, the elements in the top

meta-level are pure types, the elements in the bottom
meta-level are pure instances, and the elements at
intermediate meta-levels retain both a type and an
instance facet. They all are named clabjects, because
of the merging of the words class and object [7]. For
example, in Figure 3, Plot retains both class and object
facets: it is an instance of Applet and gives value to
fields ident and codeBase, and at the same time is a
class enabling the creation of instances like sinPlot.
The instance of relations depicted in Figure 3 provide

an ontological typing to the clabjects, as they represent
instantiations within a domain. Hence, ontological
meta-modelling is concerned with describing the
concepts in a certain domain and their properties [22].
In addition, multi-level meta-modelling frameworks
usually support an orthogonal linguistic typing [7, 12]
which refers to the meta-modelling language elements
used to build the models. For instance, the linguistic
type of Component, Map and uam is Clabject, whereas
the linguistic type of ident and name is Field.
Figure 4 shows the dual typing of our deep language

for components. The left of the figure contains a
small excerpt of the linguistic meta-model over which
all models (with any potency) to the right are typed.
Actually, one can understand the union of the three
models to the right as a normal instance of the linguistic
meta-model to the left. The linguistic typing has
the additional advantage that one can write generic
specifications using the linguistic types instead of the
ontological types, so that they become applicable to any
model at any meta-level.

potency: int 

minimum: int 

maximum: int 

Field 

Linguistic  

meta-model 

generalization 

* 

1 

1 
* 

* 

fields 

DeepElement 

QualifiedElement 

src 

trg 
supers 

children 

* 

* 

ident=“GoogleMaps” 

scroll: boolean 

mapType: [normal, terrain…]  

mapTypeControl: boolean 

Map: JavaScript 

JavaScript 

ident=“GoogleTable” 

Table: JavaScript 

cssClassName 

hRow:String 

tRow:String 

… 

cssClasses 0..1 

lin
g
u
is

ti
c
  

ty
p
in

g
 

ontological  

typing 

Linguistic extensions  

(ontologically untyped) 

… 

… 
instances * 

type 
0..1 

instance of 

Edge Clabject 

«instance of» «instance of» 

@2 

@1 

@0 

FIGURE 4: Dual linguistic/ontological typing of deep
languages, and linguistic extensions

In addition, models at any meta-level can be extended
linguistically by allowing clabjects to define further
fields, as well as by introducing new clabjects without
ontological typing [12]. This provides extensibility
to deep languages. For instance, clabject Map in
Figure 3 defines a new field scroll at potency 1,
which is instantiated at potency 0. Figure 4 shows
further linguistic extensions to our example: new fields

in clabject Map, and a CSS style for Table which
is defined as a clabject without ontological typing.
These linguistic extensions could not be anticipated in
the upper meta-level since each JavaScript component
may have its own set of features. Moreover, this
mechanism makes unnecessary the explicit modelling
of classes Feature and Slot in the upper meta-
level as it was required in the two-level solution of
Figure 2, and it guarantees that each instance of Map
will be automatically created with the appropriate
features, and type checking will be automatically
performed. Thus, the uam clabject at potency 0 is
created with appropriate fields name, scroll, mapType
and mapTypeControl because name was declared in
Component with potency 2, and the rest of fields
were declared in Map with potency 1 (see Figure 4).
Then, we can give them a value in uam and use the
built-in type checking mechanism of the system. We
will see in Section 6 that our approach enables using
inheritance relations at intermediate meta-levels, as a
form of linguistic extension as well. In this way, potency
combined with linguistic extensions enables a kind
of flexible, extensible domain-specific meta-modelling
capability [13].

Hence, a multi-level framework can be seen as
an extension of a two-level framework in two ways.
First, it extends the instantiation mechanism to enable
instantiating elements at more than one meta-level
down. Thus, deep languages generalize standard
modelling languages in which users work at the same
meta-level. Second, as seen in Figure 4, one can view
the union of all models in a deep meta-modelling stack
as a standard instance of the linguistic meta-model.

Altogether, the three meta-levels in the architecture
of our DSL for components establish a neat distinction
between the language definition at potency 2, the
repository of reusable component types at potency 1,
and the instantiation of these predefined components
to be customized in particular web applications at
potency 0. As shown in Figure 1, each meta-layer
is usually developed by different people with different
roles, and adopting a deep language neatly reflects this
separation of responsibilities, facilitating the generation
of customized modelling tools for each role.

4. DEEP META-MODELLING WITH
METADEPTH

MetaDepth [12, 23] is a multi-level meta-modelling
tool that we started to develop in 2008 in the
context of the METEORIC project. The tool
supports textual modelling through a uniform textual
concrete syntax across meta-levels, and implements
deep characterization through potency. This section
briefly presents its syntax, as we will use it to illustrate
our proposed extensions for deep meta-modelling. The
reader is referred to [12] for more details.

As an example, Listing 1 shows the MetaDepth
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specification of the three meta-level solution shown in
Figure 3. Models, clabjects and fields can be decorated
with a potency, specified after the ’@’ symbol. If no
potency is specified for an element, then it inherits
the potency of its container element. The potency can
be any positive number, or zero. The instances of an
element always receive the potency of the element minus
1. An element with potency 0 cannot be instantiated.
For instance, the model ComponentView declared

in lines 1-11 has potency 2. All clabjects declared
inside this model (Component, JavaScript and Applet)
receive the same potency because they do not specify a
potency on their own. The features declared in lines 3
(ident) and 8 (codeBase) override the default potency
with 1. Once declared, the model ComponentView

becomes a type and hence can be instantiated. Any
instance of this model (like the one in lines 13-22) has
potency 1, and this cannot be overridden.
1 Model ComponentView@2 {
2 abstract Node Component {
3 ident@1 : String ;
4 name : String {id};
5 }
6 Node JavaScript : Component {}
7 Node Applet : Component {
8 codeBase@1 : String;
9 params : String [∗];

10 }
11 }
12

13 ComponentView RepositoryComponents {
14 JavaScript Map {
15 ident = ”GoogleMaps”;
16 scroll : boolean = false ;
17 }
18 Applet Plot {
19 ident = ”FunctionPlot”;
20 codeBase=”...”;
21 }
22 }
23

24 RepositoryComponents myApplication {
25 Map uam {
26 name = ”UAMCampus”;
27 scroll = true;
28 }
29 Plot sinPlot {
30 name = ”SinPlot”;
31 params = [”A”, ”A∗sin(A∗x)”];
32 }
33 }

Listing 1: Definition of the three-level language for
components using MetaDepth.

Node is the MetaDepth keyword for top-level
clabjects (i.e. clabjects with no ontological typing).
Inheritance is declared with a colon (see lines 6 and
7), and the tool supports multiple inheritance. Fields
can be declared in the context of Nodes, Models and
Edges. A field has to declare a name and a type,
and optionally a potency, initial value, multiplicity
(an interval between brackets) and modifiers (between
braces). For example, the name field in line 4 has type
String and is declared as an identifier (modifier id),
therefore its value must be unique for all clabjects at
potency zero. Other allowed modifiers include ordered
(to keep elements in a collection in order of assignment)
and unique (a collection without repetitions). The
field name does not declare a potency, and hence it

receives the one of its container (Component, which has
potency 2). It does not declare a multiplicity either,
so [1..1] is assumed. Line 16 shows the declaration
of a field (a linguistic extension) with an initial value.
MetaDepth allows controlling whether some model or
clabject instance can be linguistically extended or not.
References are just a special case of fields with non-
primitive type.

Elements with potency bigger than zero become types
and can be instantiated. For example, the top-level
model ComponentView declared at line 1 has potency
2, and hence can be instantiated by using its name
as a type (see line 13). This is also the approach
to instantiate nodes and edges. For example, the
JavaScript node declared in line 6 is instantiated in
line 14 by clabject Map. The latter has potency 1, and
hence also becomes a type, which can be instantiated as
shown in line 25. When a clabject is instantiated, all its
fields with potency bigger than zero get automatically
instantiated in the clabject instance, their potency is
decreased in one unit, and those that reach potency
0 can be assigned a value. For example, clabject
sinPlot in lines 29-32 is created with two fields, name
and params, which can be given a value because their
potency is zero.

In addition to Nodes, MetaDepth allows the
definition of Edges to declare bidirectional associations
between Nodes. Edges are made of two opposite
references and, similar to associative classes in UML,
can define fields. As an example, line 10 in Listing 2
shows the definition of an edge named Produces

modelling a bidirectional association between the
reference ends produces and generator of nodes Event
and OutParam respectively. In this case, the edge does
not declare any field. Currently, we restrict the potency
of edges to be the same as the opposite references they
connect, which therefore should be equal. Lines 14-19
show a model with an instance of edge Produces in line
18.

1 Model ComponentView@2 {
2 Node Event@1 {
3 produces : OutParam[∗];
4 }
5 Node Param { ... }
6 Node OutParam : Param {
7 generator@1 : Event [∗];
8 }
9

10 Edge Produces@1(Event.produces, OutParam.generator) {}
11 ...
12 }
13

14 ComponentView RepositoryComponents {
15 ...
16 Event TableClick { ... }
17 OutParam TableData { ... }
18 Produces TableEvent (TableClick , TableData);
19 }

Listing 2: Defining edges in MetaDepth.

MetaDepth supports the definition of constraints
and derived fields by using Java or the Epsilon
Object Language (EOL) [15]. EOL is a language for
model manipulation with syntax similar to OCL and
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additional constructs to create objects, assign values or
iterate, among others. Constraints have a name and a
potency specifying the meta-level in which they are to
be evaluated. They can be associated to Nodes, Edges
and Models.
For example, the constraint shown in Listing 3

ensures that any indirect instance of ComponentView

at potency 0 contains at least one indirect instance
of Component. The constraint, named minComponents,
queries for the set of (indirect) instances of Component
and ensures that its size is bigger than zero. The
method allInstances returns the set of all (probably
indirect) instances of the given type that exist in
the model where the method is evaluated. As the
constraint has potency 2, it will be evaluated two
meta-levels below, so that the method allInstances

will retrieve all indirect instances of Component with
potency 0. If the constraint had potency 1, then it
would be evaluated in the next meta-level and would
return the instances of Component with potency 1.
Hence, MetaDepth provides a transparent mechanism
to retrieve the indirect instances of types (i.e. the
instances of instances – and so on – of a given type).

1 Model ComponentView@2 {
2 minComponents : $Component.allInstances().size()>0$
3 ...
4 }

Listing 3: Defining constraints in MetaDepth.

In MetaDepth, we also use EOL to define
in-place model transformations like simulators and
redesigns [23]. Moreover, in order to realize the MDE
vision of generating applications from models, the tool
includes an innovative code generation facility for deep
languages which we describe next.

4.1. Code generation for deep languages

In order to enable code generation from MetaDepth
models, we have integrated the Epsilon Generation
Language (EGL) [16] into our tool. EGL is a template-
based language specifically designed for generating code
from models that conform to a meta-model (i.e. EGL
assumes two meta-levels). Therefore, integrating EGL
required tackling the peculiarities of deep languages, in
particular to take care of indirect instances of types.
Hence, one can build templates applicable several meta-
levels below, not necessarily the immediate one.
As an example, suppose we need to generate HTML

code displaying the list of components in an application
(i.e. the instances of Component at potency 0). This
presents problems as we do not know in advance the
direct instances of Component that should be used in
the EGL template, and we do not want to modify the
template each time a Component instance is created at
potency 1. Since our framework needs to be extensible,
allowing the dynamic addition of such instances, we
need a transparent mechanism to retrieve the indirect
instances of types.

The required EGL template is shown in Listing 4.
In general, an EGL template writes its content into
a file, except the text between the symbols “[%” and
“%]”, which is EOL code and gets executed on the
input model. In the listing, the template iterates on
all existing (direct or indirect) instances of Component
in the input model in line 10, writing their name and
identifier in line 11. If we apply this template to our
example model at potency 0, we obtain a list with two
items that correspond to the clabjects uam and sinPlot,
as they are indirect instances of Component. From a
clabject we can access its type fields transparently, as
expression c.ident in line 11 shows. This field was
declared with potency 1, so that e.g., all instances
of Map will retrieve the same value for it, becoming
similar to a static attribute in Java from the point
of view of the Map instances with potency 0. Such
code generator can be invoked from the MetaDepth
console, using the load command, followed by the
template name. Additionally, EGL has commands to
load and execute a template from another template (as
we will see later), hence allowing a modular description
of code generators.

1 <!DOCTYPE HTML PUBLIC
2 ”−//W3C//DTD HTML 4.01 Transitional//EN”>
3 <html>
4 <head>
5 <meta http−equiv=”content−type”
6 content=”text/html;charset=ISO−8859−1”>
7 </head>
8 <body>
9 <ul>

10 [% for (c in Component.allInstances()) { %]
11 <li>[%=c.name%] with identifier [%=c.ident%]</li>
12 [% } %]
13 </ul>
14 </body>
15 </html>

Listing 4: A simple EGL template.

In our experience working with deep languages, it is
often necessary to define generators which do not know
beforehand all possible direct and indirect instances of
a given clabject. In our language for components, the
benefit of our approach is that we define our template
once at potency 2, then we create an arbitrary number
of component types at potency 1 (maps, plots, games,
data tables, etc.), and the generator can be applied to
instances at potency 0 independently of the instances at
potency 1. This fact enables extensible code generation
architectures, where code generators defined at potency
2 are extended with further templates defined at
potency 1. The combined generators are then applied
to instances at potency 0.

Figure 5 shows the scheme for code generation from
our family of DSLs. We have built a code generator
that uses types with potency 2, and synthesizes the
applications specified at potency 0 independently of
the types at potency 1. To include a new component
type in our repository (e.g. a gadget of Google or
a new RESTful service), the technology expert needs
to create the corresponding model at potency 1 (i.e.
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an instance of a Component subclass), and indicate
the specific EGL template to generate code for the
component type, hence obtaining extensibility. The
generic code generator at potency 2 places the selected
component instances in the generated HTML page,
and invokes the specific templates of the components
whose name is stored in fields gencodetemplate and
gencodetemplatecanvas defined in the Component

clabject (see lines 5 and 6 of Listing 5). These two
fields store the name of the EGL templates that will
write code in the generated HTML header and body,
respectively. Therefore, defining a new component type
like the Google Map in lines 13-24 of Listing 5 requires
providing the name of these two EGL templates (lines
18-19), and writing such EGL template, an excerpt of
which is shown in Listing 6. The template generates
JavaScript code that loads the google map library (lines
1–6), then creates a DataTable with the geopositions
to be visualized (lines 10–19) and a function in charge
of creating the map with the configuration options
taken from the model (lines 21–31), showing the map
and synchronizing it with other components via event
handlers (not shown).

@2Component View

Code generatortyped on

Component

Code generator

(content)

yp

conforms to conforms to

JavaScript Applet…

Google
Map

@1
Google

Calendar

@1

…

specific

code

generator

specific

code

generator

An
@0

conforms to conforms to

applicable to
Application

applicable to

FIGURE 5: Architecture for code generation from our
deep languages

1 Model ComponentView@2 {
2 abstract Node Component {
3 ident@1 : String ;
4 name : String {id};
5 gencodetemplate@1 : String ;
6 gencodetemplatecanvas@1 : String;
7 ...
8 }
9 Node JavaScript : Component {...}

10 ...
11 }
12

13 ComponentView GoogleMapComponent {
14 enum mapTypes{ normal, terrain, satellite , hybrid }
15

16 JavaScript Map {
17 ident = ”map”;
18 gencodetemplate = ”googlemaps.egl”;
19 gencodetemplatecanvas = ”googlemaps canvas.egl”;
20 maptype : mapTypes=normal;
21 useMapTypeControl : boolean=false;
22 enableScrollWheel : boolean=false;
23 }
24 }

Listing 5: Defining a code generator for the Map

component type.

1 <script type=”text/javascript”
2 src=”http://www.google.com/jsapi”>
3 </script>
4 <script type=’text/ javascript ’>
5 google. load( ’ visualization ’ , ’1’ , {’packages’ : [ ’map’]});
6 </script>
7 <script type=”text/javascript”>
8

9 var [%=component.name%];
10 [% var dataTable : String :=component.data.table.varid;%]
11 [% if (not genDataTables.includes(dataTable)){%]
12

13 var [%=dataTable%] = new google.visualization.DataTable();
14 [% for (col in component.data.table. cols ){ %]
15 [%=dataTable%].addColumn(’[%=col.dtype%]’, ’[%=col.label%]’);
16 [%}%]
17

18 //... load the geopositions ...
19 }%]
20

21 function drawMap[%=component.name%]() {
22 var options={}
23 options [ ’showTip’]=true;
24 options [ ’mapType’]=’[%=component.maptype%]’;
25 options [ ’useMapTypeControl’]=[%=component.useMapTypeControl%];
26 options [ ’ enableScrollWheel ’]=[%=component.enableScrollWheel%];
27 [%=component.name%] = new google.visualization.Map(
28 document.getElementById(’[%=component.name%]’));
29 [%=component.name%].draw([%=dataTable%], options);
30 //... synchronize with other components...
31 }
32

33 google.setOnLoadCallback(drawMap[%=component.name%]);
34 </script>

Listing 6: Defining a JavaScript EGL template for
the Map component type (googlemaps.egl).

As Figure 5 shows, the templates for code generation
of the different components are called from another
template in charge of generating the content of the
application HTML pages. Listing 7 shows an excerpt
of this latter template, which is invoked for each page
in the presentation view. Line 6 iterates on each
component in the page content. For each component,
line 7 loads the corresponding template, line 8 adds
the component as parameter to the template, and line
10 invokes the template, writing the resulting text in
that position. This is the standard way to load, add
parameters and invoke a template from another one in
EGL.

1 <!DOCTYPE HTML PUBLIC
2 ”−//W3C//DTD HTML 4.01 Transitional//EN”>
3 <html>
4 <head>
5 ....
6 [% for (c in page.content) {
7 var t : Template := TemplateFactory.load(c.gencodetemplate);
8 t .populate( ’component’, c);
9 %]

10 [%=t.process()%]
11 [%}%]
12 </head>
13 <body>
14 ....

Listing 7: Excerpt of the template for generating the
content code.

Once we have introduced the main ingredients of deep
meta-modelling and their realization in MetaDepth,
the following sections discuss extensions and new deep
meta-modelling features that we needed to include
in our framework in order to be able to apply deep
meta-modelling in practice. However, the proposed
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extensions are general and applicable to any multi-level
meta-modelling framework supporting potency.

5. RICHER SEMANTICS FOR POTENCY

In this section we discuss some issues regarding the
semantics of potency, introducing a novel extension to
the standard semantics [7] aimed at providing flexibility
in modelling and facilitating the composition of deep
languages.

5.1. Instantiation semantics

A key issue when building a multi-level meta-modelling
framework is the instantiation semantics of potency
for the different modelling elements (clabjects, fields,
references and edges). Even though there is a consensus
in the literature concerning the semantics of clabjects
and fields [8, 11], it is not so for references, constraints
and edges [11, 24].
The instantiation semantics for clabjects is the

following: a clabject X with potency n>0 can be
instantiated, leading to a clabject with potency n-1.
If such an instantiation of X is not performed, then
one cannot continue instantiating X at level n-2. This
situation is illustrated in Figure 6(a), where a clabject X
with potency 2 is instantiated once at level 1 (clabject
Y) and then once again at level 0 (clabject Z). If X is
not instantiated at potency 1, then we cannot obtain
an indirect instance of X at potency 0. Hence, we say
that this kind of instantiation is mediated.

@2

@1

X

Y : X

Model M

M M1

@0

Z : Y

M1 M2

(a) Clabjects

@2

@1

X

Y : X

Model M

M M1

@0

Z : Y

M1 M2

a : int

a = 4

(b) Fields

@2

X

Model M

M M1

M1 M2

A
a

*

Y:X B:A
b: a

[0..1]

@1

Z:Y C:B
c: b

@0

B1:A

C1:B1

(c) References

FIGURE 6: Semantics of the instantiation of potency

The standard instantiation semantics for fields with
a primitive type is different. A field with potency n can
only receive a value exactly n meta-levels below. As a
consequence, at intermediate meta-levels, clabjects do
not need to have a slot for it. Figure 6(b) illustrates
this issue, where the field a with potency 2 receives a
value at level 0. We therefore say that the instantiation
of fields is not mediated. In MetaDepth, we relax this
restriction, and the tool internally instantiates fields at
intermediate meta-levels (e.g. at level 1 in the figure)
in order to allow redefining their default value. In any

case, the point is that the instantiation of fields at
intermediate meta-levels is not mandatory, being the
slot for the field strictly necessary at potency 0, but
not at intermediate meta-levels.

The instantiation of references (i.e. fields with
non-primitive type) is similar to that of clabjects, as
a reference with potency n must be instantiated at
potency n-1 to enable further instantiations at potency
n-2, and so on. Hence, the instantiation of references
is also mediated. For example, Figure 6(c) shows a
reference a with potency 2 that is instantiated once at
level 1 (reference b of type a), and then reference b is
instantiated at meta-level 0 (reference c of type b). The
cardinality of a reference only restricts the number of
instances in the immediate meta-level below. In the
figure, a has cardinality [0..*], therefore clabject Y at
level 1 can define any number of a instances. In its
turn, each instance can define its own cardinality to be
evaluated in the meta-level below.

Note that the semantics of potency given to references
does not allow connecting clabjects Z and C1 in
Figure 6(c), because the model at level 0 must be
typed by the model at level 1, and this specifies that
references of type b must point to B clabjects and
not to B1 clabjects. In contrast, one could adopt
an alternative field-like instantiation for references
enabling their instantiation only with potency 0. In
this case, reference a could only be instantiated at
level 0, and one could connect any indirect instance
of X with any indirect instance of A, and in particular
connecting Z and C1. As a drawback, with this second
semantics it is not possible to fine-tune the cardinality
of references at intermediate meta-levels as we have
done in Figure 6(c), where we have assigned cardinality
[0..1] to the reference at level 1.

In MetaDepth, edges have a potency and follow
a clabject-like instantiation like in Figure 6(a).
Constraints are also decorated with a potency and
follow a field-like instantiation. In this way, a constraint
with potency 2 will be evaluated exactly 2 meta-levels
below, but not at the immediate level. Should we like
the constraint to be evaluated at the immediate meta-
level below, we just have to assign it potency 1.

Figure 7 shows an application of the previous
discussion to our running example. Node Component

declares a reference to InParam modelling the input
parameters of the component. Each instance of the
reference at potency 1 defines the type of one or more
input parameters for a particular component type,
whereas an instantiation at potency 0 specifies the
actual value for a parameter. The cardinality of the
inParams reference at potency 2 allows defining any
number of parameter types at potency 1. The reference
data, which is an instance of inParams, indicates
that the TableVisualizer component has exactly one
DTable as input parameter. If the visualizer had two
tables as parameters, it would be enough to change the
cardinality of this reference. This cardinality will be
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evaluated in the models of potency 0.

Component InParam
inParams

TableVisualizer DTable
data

*

1

JavaScript

aTable aDTable
adata

Param @2

@1

@0

FIGURE 7: Example of instantiation of references

Listing 8 shows the MetaDepth definition of the
two upper meta-levels in Figure 7. The reference
inParams is declared in line 3 and instantiated in
line 16. The name between braces in line 16 refers
to the ontological type of data, whereas the number
between brackets indicates its cardinality. As reference
inParams is declared with cardinality [*], clabject
TableVisualizer could instantiate it any number of
times, and not just once as in this example. Regarding
the instantiation of primitive fields (like name or ident),
it is automatically handled by MetaDepth when the
clabject that defines them is instantiated.

1 Model ComponentView@2 {
2 abstract Node Component {
3 inParams : InParam[∗];
4 name : String ;
5 ident@1 : String ;
6 ...
7 }
8 Node JavaScript : Component { ... }
9 abstract Node Param { ... }

10 Node InParam : Param { ... }
11 ...
12 }
13

14 ComponentView RepositoryComponents {
15 JavaScript TableVisualizer {
16 data : DTable[1] {inParams};
17 ident = ”TVisualizer”;
18 ...
19 }
20 InParam DTable { ... }
21 }

Listing 8: Example of instantiation of references.

In conclusion, the presented instantiation mecha-
nisms are extensions of those found in standard two-
level meta-modelling, where all elements in meta-
models would have potency 1. Moreover, the different
instantiation styles shown in Figure 6 clarify the pro-
posals currently found in the literature of multi-level
meta-modelling [8, 11, 24].

5.2. Deep references

Complex systems are usually modelled from different
viewpoints, each one of them focusing on a different
aspect of the system. Hence, a system is described by
a collection of interconnected models.

When using deep languages, sometimes a view needs
to refer to the instances of a clabject defined in another
view. This is problematic if the direct type of these
“external” instances is unknown beforehand, and we
only know their indirect type two or more meta-levels
above. This is the case of our Presentation view. This
view defines a clabject Page that stores a collection of
Component indirect instances with potency 0, which are
declared in the Component view. However, we cannot
know in advance the direct type of the components
in this collection, as it depends on the instances
of Component with potency 1 (like Map, Plot and
TableVisualizer). The declaration of this collection
becomes problematic, since we want our language to be
extensible so that new component types can be added
at any time, but it is unfeasible to know the type of all
possible component types of potency 1 in advance.

This issue does not arise in two-level meta-modelling
approaches, as all references declared in a meta-model
always refer to the next meta-level below. Thus, in
a two-level setting, it would be enough to declare a
collection of type Component. In our case, if we define in
Page a collection of type Component, then the instances
of Page will store direct instances of component with
potency 1, but not indirect ones with potency 0 as it is
needed.

To solve this problem we extend deep languages with
the possibility of referencing clabjects by its top-level
type, together with a potency indicating the depth of
the instance that is to be referenced. This idea is shown
in Figure 8, which depicts the relation between the
Presentation and the Component views. In particular,
Page (with potency 1) declares a reference to Component
(with potency 2). However this reference is assigned
potency 0, which means that it will store indirect
instances of Component with potency 0.

DEEP

LANGUAGE

DEFINITION

@2

Component

view

Component

@1

@0

Presentation 

view

@0

@1

@0

mapTable:

TableVisualizer

TableVisualizer:

JavaScript
…

Page

p1: Page

DEEP

LANGUAGE

USAGE

*

DEEP

LANGUAGE

USAGE

FIGURE 8: Presentation view: reference to deep
clabject

In our experience, the languages used to model com-
plex systems usually include views with heterogeneous
number of meta-levels. As Figure 8 shows, our deep ref-
erence extension is needed to overcome the impedance
mismatch due to the different depth of the languages to
be interconnected: from the Presentation view perspec-
tive, the potency 1 of the Component view is irrelevant
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and therefore skipped.
Listing 9 contains an excerpt of the definition and

instantiation of the Presentation view in MetaDepth
syntax. Lines 1-16 define the PresentationView model
with potency 1. The view imports the ComponentView

model, which has potency 2, in line 1. The Page

node in lines 8-14 declares a collection of Component
clabjects of potency 0, which is specified after the
symbol “@” in line 11. The listing also shows part
of one instantiation of the Presentation view in lines
18-27. The instance model defines the appearance of
the simple web application shown in Figure 1, which is
made of six pages although the listing only shows the
declaration of one (p1). The field content of this page
(line 21) holds a collection of four indirect instances of
Component with potency 0: a map, a table storing the
locations in the map, a calendar and a table storing the
events in the calendar.

1 Model PresentationView@1 imports ComponentView {
2 Node Presentation {
3 content : Page[∗];
4 styleHead : StyleHead; // head
5 styleTree : StyleTree ; // tree
6 styleContent : StyleContent; // content
7 }
8 Node Page {
9 name : String ;

10 parent : Page [0..1];
11 content : Component@0[∗];
12 style : StyleContent;
13 layout : Layout;
14 }
15 ...
16 }
17

18 PresentationView UAMPresentation imports UAMComponents {
19 Page p1 {
20 name = ”Welcome page”;
21 content = [map, mapTable, calendar, calendarTable ];
22 }
23 ...
24 Presentation presen {
25 content = [p1,p2,p3,p4,p5,p6];
26 }
27 }

Listing 9: Reference to deep clabject.

5.3. Leap semantics for potency

As discussed in Section 5.1, in deep meta-modelling,
it is only possible to create an element at potency n

if the meta-level at potency n+1 contains its clabject
type. This is in line with the strict meta-modelling
approach [25], where each element is the instance of
exactly one element in the upper meta-level. However,
we are sometimes interested only in the instances with
potency 0. In this case we have to create clabjects at
each intermediate meta-level – with a so-called identity
instantiation that does not introduce new information
– only for the purpose of obtaining suitable types to
instantiate clabjects at potency 0.
For example, our Component view must allow

connecting any two components at level 0 by means of
connectors. For this purpose we should define a clabject
Connector with potency 2, and then one instance of it
for each pair of instances of Component with potency

1, since each connector must store a reference to the
concrete parameters of the connected component types.
In this way, it is possible to connect any two component
instances at level 0. However, this solution is hardly
usable in practice as, whenever a new component type
is added with potency 1, we need to add also new
instances of connector with potency 1 to enable the
connection of the new component type with all existing
ones.

To alleviate this situation, we introduce a semantics
for potency named leap which is similar to the semantics
of potency for fields (see Figure 6(b)), in the sense
that instantiation is not mediated. Thus, clabjects and
references with a leap potency of n can be instantiated
exactly n meta-levels below, but not at intermediate
meta-levels. Conceptually, this is equivalent to
“skip” the instantiation at the intermediate meta-
levels. Technically, it is equivalent to let the meta-
modelling framework to create “phantom” instances of
the element with leap potency at each intermediate
meta-level.

Figure 9 makes use of the leap semantics to define
the Component view in the upper part. Connector is
assigned potency 2, which is indicated after the symbol
“@” as usual, but the enclosing parenthesis indicate
that the potency has leap semantics and therefore we
can instantiate the clabject only at level 0 (2 meta-
levels below), saving us from its manual instantiation
at level 1. The connector defines deep references to
the clabjects InParam and OutParam. In this way, the
instances of Connector can be connected to any indirect
type of these two clabjects with potency 0, thus solving
the problem described before.

DEEP

@2
Component view

@0O P* *DEEP

LANGUAGE

DEFINITION
Component

@0

InParam

OutParam
Connector

*

*

@(2)*

*
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cal:CalendarEngine

LANGUAGE

USAGE

tab:TableVisualizer

ev:CallEvents c:Connector dt:DTable

FIGURE 9: Component view: leap potency for clabject

As an example, there are two instances of JavaScript
with potency 1: CalendarEngine, which is used to
retrieve calendar events for a given user from the
Google Calendar and store the events in a table,
and TableVisualizer, which displays a table visually.
Both component types are instantiated again at level
zero, and can be connected through a connector. In this
way, the retrieved events from the calendar are shown
in a table. Should Connector be assigned a normal
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potency (instead of leap) we would need to instantiate
it at level 1.
Listing 10 shows the definition of the previous

Component view in MetaDepth. The notation for
leap potency is shown in line 10. Each component
type has input and output parameters, and the clabject
Connector in lines 10-13 allows connecting these
parameters at level 0.

1 Model ComponentView@2 {
2 abstract Node Component {
3 inParams : InParam[∗];
4 outParams : OutParam[∗];
5 ...
6 }
7 abstract Node Param { ... }
8 Node InParam : Param { ... }
9 Node OutParam : Param { ... }

10 Node Connector@(2) {
11 from : OutParam@0[∗];
12 to : InParam@0[∗];
13 }
14 ...
15 }

Listing 10: Leap potency for clabject.

There is a constraint between the leap potency of an
element and the deep references it can declare, though.
In particular, a clabject C with leap potency n can only
declare a deep reference of potency k to a clabject D

with potency n+k (assuming that both clabjects are
defined in the same model). This is so because clabject
C can only be instantiated n meta-levels below, where
the indirect instances of D have potency k, as required
by the deep reference. In addition, if the potency of
D is also leap, then k must be 0. In the example of
Listing 10, the deep references from and to point to
Component instances of potency 0. Hence we have n=2

and k=0, which fulfils 2=2+0.
References can also be assigned a potency with leap

semantics. For illustrative purposes, Listing 11 shows
an example where Connector has standard potency 2,
and its two owned references have leap potency 2. In
this way, the connector needs to be instantiated at level
1, whereas the references can only be instantiated at
level 0. As a difference from the previous example,
here it is possible to define different types of Connector
with potency 1, if we want to model different kinds of
communication semantics between components.

1 Model ComponentView@2 {
2 ...
3 Node Connector {
4 from@(2) : OutParam@0[∗];
5 to@(2) : InParam@0[∗];
6 }
7 ...
8 }

Listing 11: Leap potency for references.

In summary, we have shown that the different
semantics of potency proposed in the literature
(clabject-like and field-like, see Figure 6) can be
captured either by standard potency or leap potency.
Hence, our proposal is the first one to recognise and
implement these two kinds of instantiation semantics.

5.4. Leap semantics vs. language fragmenta-
tion

As an alternative to the use of leap potency to “skip”
meta-levels, one could decide to define Connector with
potency 1, and include deep references to Component

with potency 0. However, this would not have
the desired effect because Connector could only be
instantiated in the next meta-level (i.e. at a model with
potency 1), but not two meta-levels below, where the
indirect instances of Component to be referred reside
(i.e. at a model with potency 0).

To be able to instantiate connectors only once, but
two meta-levels below (i.e. at a model with potency
0), we proposed leap potency in the previous section.
Another possibility would be to fragment the language
definition by creating a new view for connectors with
potency 1, as Figure 10 shows. Hence, a general solution
to simulate leap semantics is to move the clabjects with
leap semantics to a separate model with potency 1.
The moved clabjects would declare the necessary deep
references to the clabjects in the original models.

DEEP

LANGUAGE

DEFINITION

@2Component view

Component

Type

@0

@1

@0

cal:CalendarEngine

DEEP

LANGUAGE

USAGE

InParam

OutParam*

*

*

*
@0

CalendarEngine:

JavaScriptType

TableVisualizer:

JavaScriptType

CallEvents:OutParam

DTable:InParam

tab:TableVisualizer

ev:CallEvents

dt:DTable

Connector view

Connector

@1

c:Connector

@0

FIGURE 10: Splitting connectors and components

Note however that this solution may sometimes lead
to an excessive fragmentation of models, and therefore
to unnecessary complexity. This is the situation in
Figure 10, where both components and connectors
conceptually belong to the same view of the system,
but need to be kept in separate models.

Other times this fragmentation is natural, like in the
case of our Presentation view, where Page has potency 1
and declares a reference of potency 0 to Component (see
Figure 8). In that case, Page and Component belong to
two different system views and can be naturally kept
apart in different models. Should we like to declare
pages and components in the same view of the system,
then Page should be given a leap potency of 2 in the
Component view.

6. UNIFORM HANDLING OF INHERI-
TANCE

Clabjects may have both a type facet and an instance
facet. Clabjects having a type facet naturally support

The Computer Journal, Vol. ??, No. ??, ????



14 J. de Lara, E. Guerra, R. Cobos, J. Moreno

inheritance, therefore it is natural to use inheritance
at any potency greater than zero because clabjects
retain a type facet. In addition, we have also found
useful the inheritance between clabjects that are pure
instances at potency zero, to enable value inheritance
and overriding. This permits handling inheritance at
every meta-level uniformly.

6.1. Inheritance between pure types

Inheritance acts as usual for clabjects with a type facet:
field types declared in a parent clabject are inherited
by its children, which can redefine the initial value
of the inherited fields. For example, in lines 3-4 of
Listing 1, the Component clabject declares the fields
ident and name, which are inherited by the children
clabjects JavaScript and Applet.
A child clabject can declare a potency equal or higher

than the potency of its parent, being most common the
equality of both potencies. If the child declares a higher
potency, then its instantiation depth is bigger than the
one declared by the parent, which does not pose any
problem. On the contrary, declaring a lower potency
in the child is problematic because the substitutability
of supertypes by subtypes would get compromised. In
such a case, the subtype could not be instantiated as
many times as the supertype, which may break the
expectations of a client that relies on all subtypes of
the supertype to be instantiable in as many meta-levels
as the potency of the parent indicates (like, e.g., a deep
code generator like the one defined in Listing 4). As a
consequence, this situation is not allowed.
Moreover, declaring a clabject with lower potency

than its parent has the additional problem that it might
prevent the instantiation of some of the fields declared
in the parent. Figure 11 illustrates this issue. The
left part shows a compatible inheritance relation where
clabject B has higher potency than clabject A. This
situation is not problematic because the instance of B
at potency 1 can assign a value to the inherited field
a. The right part of the figure shows an incompatible
inheritance relation because the clabject B reduces the
potency of its supertype A. As a result, B can only be
instantiated one meta-level below and hence the a field
never receives a value.

6.2. Inheritance between pure instances

For fields of potency zero, inheritance is interpreted as
value overriding, similar to the case of initial values for
field definitions. This is feasible when both the parent
and the child clabjects define the same field, in order to
enable overriding. Hence, we require the child clabject
to have the same ontological type as the parent, or to
be a subtype (the next subsection will show that this is
indeed required at any meta-level, not only at potency
0). In this way, if the child clabject does not explicitly
assign a value to a field with potency 0, it takes the

A
@1

B
@2

a: int

A
@2

B
@1

a: int

B1: B

b: B1

a= 5

B1: B

FIGURE 11: Compatible (left) and incompatible
potency (right) in inheritance relations

value from the parent. This is useful to enable a
kind of prototype-instance [26] way of modelling, where
the instances of a prototype clabject can extend and
override the value of its properties.

In our example, we have used inheritance of pure
instances to reuse predefined presentation styles when
modelling new web applications, as Figure 12 shows.
In particular, we have built a repository of presentation
models with potency 0, which declare predefined styles
for the header, navigation tree and content of the
applications. The figure shows the definition of one of
such predefined styles, named Predef ORANGE, which
renders elements in orange colour. The style has
potency 0 as it is an instance of the Presentation view
model with potency 1. If a new application wants to
use the predefined style, its Presentation view (named
UAMPresentation in the figure) only has to inherit
from it to get all the style values. In this way, the
presentation view of the new user application does not
have to give value to the fields taking care of the
style unless it wants to override them – the values are
inherited from the predefined presentation – but only
to the fields dealing with the content.

StyleContent

1

Presentation

sthead

_ORANGE :

StyleHead

presentation

_ORANGE:

Presentation

presen:

Presentation

«instance of»«instance of»

StyleTree

11

sttree

_ORANGE :

StyleTree

Page
*

content
PresentationView

Predef_ORANGE UAMPresentation

StyleHead

bgcolor: String

color: String

fontSize: Integer

@1

... ...

stcontent

_ORANGE :

StyleContent

bgcolor=“orange”

color=“#800000”

fontSize=14

@0 @0

p1:Page

p2:Page

…

... ...

library of predefined styles

new user application

FIGURE 12: Presentation view: using inheritance at
potency 0 to reuse predefined presentations
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Listing 12 shows the realization in MetaDepth.
Lines 1-14 define the predefined presentation style.
Lines 16-24 create the presentation view of a particular
application that reuses the predefined style. The way
of using the predefined style is by importing its model
(Predef ORANGE in line 17), and creating a presentation
object that inherits from the presentation object in
the imported model (line 20). Changing the style of
an application amounts to importing and inheriting
from a different predefined presentation. The defined
presentation presen can override values inherited from
the parent, like for example it is done in line 21,
where the fontSize is changed to 12. In addition to
inheriting and overriding values, the created clabject
presen points to the actual content of the application,
as done in line 22.

1 PresentationView Predef ORANGE { // Predefined style definition
2 StyleHead sthead ORANGE {
3 bgcolor = ”orange”;
4 color = ”#800000”;
5 fontSize = 14;
6 }
7 StyleTree sttree ORANGE { ... }
8 StyleContent stcontent ORANGE { ... }
9 Presentation presentation ORANGE {

10 styleHead = sthead ORANGE;
11 styleTree = sttree ORANGE;
12 styleContent = stcontent ORANGE;
13 }
14 }
15

16 PresentationView UAMPresentation
17 imports UAMComponents, Predef ORANGE {
18 Page p1 { ... }
19 Page p2 { ... }
20 Presentation presen : presentation ORANGE { // Using style
21 fontSize = 12;
22 content = [p1,p2];
23 }
24 }

Listing 12: Using inheritance at potency 0.

Another way to support predefined styles without
resorting to inheritance would have been to define two
different languages to model the presentation view:
one to define the content and layout of pages, and
another one for the style. The instances of the former
would store a reference to a (predefined) instance of
the latter, and changing the style would consist on
updating the reference to a different style. In general,
each set of features that we may want to make reusable
should be declared in a separate clabject, and then use
references instead of inheritance. Our approach based
on inheritance of instances is more flexible, yields more
cohesive language definitions and fewer clabjects.

6.3. Inheritance at intermediate meta-levels

At intermediate meta-levels, clabjects exhibit both type
and instance facets. In this case, inheritance works as
overriding for fields with potency 0, whereas the rest of
fields are inherited from parents to children. Moreover,
the type of the clabjects in an inheritance relation must
be compatible, i.e. a clabject B can only inherit from A

if both have the same (direct) type, or if the type of B
is a subtype of the type of A. In the remaining of this

section we discuss why other cases are problematic, and
therefore they are not allowed.

The first forbidden situation, shown in Figure 13, is
the definition of an inheritance relation between two
clabjects A1 and B1, if their types are different and
there is no inheritance relation between the types. The
rationale is that this may break possible assumptions
on design decisions taken at the top-level model. For
example, allowing the inheritance depicted in the figure
would break the expectations from clients of such
clabjects, as they would expect that any direct or
indirect instance of B is not an instance of A. Hence,
if the designer of the top-level model adds a constraint
with potency 2 that iterates on all B instances, he
does not expect finding indirect instances of A at the
bottom-level model. As we will see later, access to fields
declared with potency 2 can also become problematic.
Similar constraints were also posed in [27] in order
to define a refinement relation between elements at
different meta-levels.

A
@2

B
@2

b: B1

A1: A

B1: B

a: A1

FIGURE 13: Incompatible inheritance relation

Figure 14 explains the problem using Venn diagrams.
In Figure 14(a), the set A represents all possible
instances of clabject A, and similar for set B. Both sets
are disjoint because no clabject at potency 1 can be an
instance of A and B simultaneously. Two elements of the
sets (the A1 and B1 clabjects at potency 1) are explicitly
represented with dots. This reflects the instance facet
of A1 and B1, which are direct instances of A and B.
However, A1 and A2 have also a type facet and hence
can be seen as sets themselves, as Figure 14(b) shows.
Instances of A1 (resp. B1) are indirect instances of A
(resp. B) and therefore we have the set inclusions shown
in the figure.

Figure 14(c) shows the sets of possible instances of
clabjects A1 and B1 at potency 1, taking now into
account the inheritance relation between B1 and A1.
The inheritance relation requires all instances of B1

to be also instances of A1 (therefore the set inclusion
B1 ⊆ A1), but there may be instances of A1 (like a)
that are not instances of B1. At potency 0, any instance
of B1 (e.g. b in Figure 13) is an indirect instance of
both B and A (the latter due to the inheritance relation
at potency 1). In order to represent such indirect
instances, we have to merge or flatten the diagrams in
Figures 14(a) and (c). This flattening cannot be done
satisfactorily, preserving the constraints imposed by the
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A1 

B1 

a 

b 

A 

A1 

B1 

B 

A 

(a)                (b)                 (c)                    (d) 

B 

A1 

B1 

A 

B 

A1 

B1 

FIGURE 14: Set-based visualization of subtyping for
Figure 13. (a) Direct instance sets of unrelated
clabjects. (b) Including instances of A1 and B1 as
(indirect) instances of A and B. (c) Declaring A1 as
supertype of B1. (d) Impossible flattening: Set B1

cannot belong to both A and B

two diagrams. An attempt to such flattening is shown
in Figure 14(d). As shown in the figure, any instance of
B1 is also an instance of A1, and transitively of A. Hence,
the set A includes all direct and indirect instances of A.
However, B1 instances cannot be also indirect instances
of B, because sets A and B are demanded to be disjoint
(see Figure 14(a)), and therefore no element can belong
to both.
Please note that, in MetaDepth, an instance of

an instance of A is an indirect instance of A, and we
treat direct and indirect instances uniformly. In the
example, evaluating the expression A.allInstances()

at potency 1 yields all direct instances of A, while
the same expression evaluated at potency 0 yields all
indirect instances of A.
A second forbidden situation is illustrated in

Figure 15. In this case, A1 is not allowed to inherit
from B1 at potency 1 because A is a supertype of B at
potency 2 (i.e. the subtyping relation at the top meta-
level is reversed in the instances at the intermediate
meta-level). As before, we forbid this situation to meet
the expectations from clients of the language [27].

B1: B

A1: A

b: B1a: A1

A
@2

B
@2

FIGURE 15: Incompatible inheritance relation

The fact that B is a subtype of A in this example can
be seen as subset inclusion, as shown in Figure 16(a).
The figure shows two instances A1 and B1 of clabjects
A and B, respectively. A1 is not an instance of B,
and therefore is not included in set B. Figure 16(b)

shows the sets of instances of A1 and B1, once the
former is declared a subtype of the latter at potency
1. At potency 0, one may ask for the indirect instances
of A and B, for which we need to flatten the sets in
Figures 16(a) and (b). Hence, in Figure 16(c) the
set A contains the direct and indirect instances of A,
and similarly for set B. The flattening in Figure 16(c)
reveals a contradiction as it requires all A1 instances to
be indirect instances of B (there is a subset inclusion
A1 ⊆ B), while A1 itself is not an instance of B

(see Figure 16(a)). Although A1 should belong to set
B because all its instances are also B instances (see
Figure 16(b)), it does not. Thus, the problem comes
from the fact that the property “not being an instance
of B” is not preserved for the instances of A (like A1)
due to the incompatible inheritance at potency 1.

B1 

A1 

b 

a 

A 

B1 

B 

A1 

b 

a 

A 

B 

A1 

B1 

(a) (b) (c) 

FIGURE 16: Set-based visualization of subtyping for
Figure 15. (a) A is a supertype of B. (b) B1 is a
supertype of A1. (c) Flattening of (a) and (b) yields
a contradiction

An additional problem of allowing reversing inheri-
tance relations is related to field access, as shown in
Figure 17. The figure shows the declaration of an at-
tribute at of potency 2 in clabject B, and a constraint
with potency 2 that checks that some indirect instance
of B has a value bigger than zero. At level 1, the left
model includes a compatible inheritance, whereas the
right model shows an incompatible one because clab-
ject a at level 0 does not have a field at, even though
it is an indirect instance of B. This is so as, in level 1,
A1 inherits the fields with type facet declared in B1, but
not at which was declared at level 2.

A 
@2 

A1: A 

B1: B 

b: B1 

B1: B 

A1: A 

a: A1 

b.at>0  a.at>0 

ü 

B 

at: int 

@2 

at=5 

B.allInstances(). 

     exists(b|b.at>0) 

@2 

FIGURE 17: Field access issues when using inheritance
at intermediate meta-levels
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On the contrary, there is no problem if the inheritance
relation is compatible, as shown in Figure 18. In this
case, B1 is allowed to inherit from A1 because A is a
supertype of B.

A
@2

A1: A

B1: B

b: B1

B
@2

a: A1

FIGURE 18: Compatible inheritance relation

Figure 19 shows the set-based representation of the
example: the sets of instances of clabjects A and B in
Figure 19(a), the sets of instances of clabjects A1 and
B1 in Figure 19(b), and the flattening of all these sets
in Figure 19(c). In particular, the flattening shows
that the defined inheritance relation does not lead to
a contradiction, as b is a direct instance of B1 and an
indirect instance of B and A.

A 

B 

A1 

B1 

(a) 

A1 

B1 

a 

b 

(b) 

A 

B A1 
B1 

(c) 

a b 

FIGURE 19: Set-based visualization of subtyping for
Figure 18. (a) A is a supertype of B. (b) A1 is a supertype
of B1. (c) Compatible flattening of (a) and (b)

Coming back to the example, our language for
components makes use of inheritance at intermediate
meta-levels, as the Figure 20 shows. In particular,
the Google suite of gadgets contains several visualizers
for JavaScript data tables, like PieCharts, Tables and
GeoMaps. Hence, our library of components at potency
1 contains instances of the JavaScript component type
for the different visualizers, and we have defined a
parent abstract clabject TableVisualizer for all of
them with the definition of their common features.
Thus, TableVisualizer declares one input parameter
of type DTable, which is inherited by the children
components. The clabject is abstract so that it cannot
be instantiated. Note how clabjects at potency 1 can
be extended linguistically with new fields, like e.g. the
field allowHTML in clabject Table.
Listing 13 shows the MetaDepth definition of this

example. The Component view (with potency 2) is
declared in lines 1-10, and an instance of this view

Component

JavaScript AppletInParam inParams
* …

TableVisualizer: 
JavaScript

DTable: 
InParam

data:
inParams

1

@2

@1

Param

JavaScript

GeoMap: 
JavaScript

Table: 
JavaScript

InParam 1

…

ident=“geomap” ident=“table”
allowHTML: boolean

FIGURE 20: Component view: inheritance at potency
1 to encapsulate Google visualizers for tables

named RepositoryComponents is created in lines 12-
24. The repository declares TableVisualizer as an
instance of JavaScript in line 13. Two clabjects,
corresponding to two concrete visualizers, inherit from
TableVisualizer in lines 17 and 20.

1 Model ComponentView@2 {
2 abstract Node Component {
3 inParams : InParam[∗];
4 ...
5 }
6 Node JavaScript : Component { ... }
7 Node Applet : Component { ... }
8 Node InParam { ... }
9 ...

10 }
11

12 ComponentView RepositoryComponents {
13 abstract JavaScript TableVisualizer {
14 data : DTable[1] {inParams};
15 ...
16 }
17 JavaScript GeoMap : TableVisualizer {
18 ident = ”geomap”;
19 }
20 JavaScript Table : TableVisualizer {
21 ident = ”table”;
22 allowHTML : boolean;
23 }
24 }

Listing 13: Using inheritance at potency 1.

6.4. Simulating deep references with inheri-
tance

Once we have analysed the semantics of inheritance at
different meta-levels, this section discusses the uses of
inheritance as an alternative solution to some of the
problems we addressed in Section 5.

In some situations, one could use inheritance to
replace deep references by a reference to a base clabject
from which all other clabjects inherit, as Figure 21
shows. Hence, instead of declaring a deep reference
from Page to Component with potency 0 (see part (a)
of the figure), another solution is to declare a normal
reference to an instance of Component, from which all
instances of Component at potency 1 should inherit.
However, this solution is not adequate in our context
for several reasons. First, it requires an extra clabject
BaseComponent at potency 1, solely for the purpose
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of being the base class of all Component instances at
potency 1. Second, this solution works because of a
convention, as it requires all Components with potency
1 to inherit from BaseComponent. If some Component

instance does not inherit from it, then it cannot be
included in a Page instance. Finally, it introduces a
dependency between all Components at potency 1 and
BaseComponent.

@2 Component view 

Component 

@1 

Presentation  
view 

@0 

@1 

@0 

mapTable:  

TableVisualizer 

TableVisualizer:  

JavaScript 

Page 

p1: Page 

* 
BaseComponent:  

Component 

@2 

Component  

view 

Component 

@1 

@0 

Presentation  

view 

@0 

@1 

@0 

mapTable:  

TableVisualizer 

TableVisualizer:  

JavaScript 

Page 

p1: Page 

* 

(a)                                                                   (b) 

FIGURE 21: (a) Connecting languages with heteroge-
neous depth using deep references, (b) Replacing deep
references by inheritance to common parent

Our solution using deep references does not work by
a convention, but by construction, and is simpler as
it does not need to introduce an artificial instance of
Component, together with the inheritance relationship
to all Components of potency 1.

7. DISCUSSION AND LESSONS LEARNT

In this section we discuss the advantages and limitations
of having used a deep meta-modelling approach for the
example project, present a summary of the proposed
extensions and discuss additional findings in our
experience with multi-level meta-modelling for MDE.

7.1. Benefits of using a multi-level approach

Our running example presents several challenges that
we found difficult to overcome using a two-level meta-
modelling approach. First, our Component view needs
to define both component types and instances. The
former declare features that must be allocated by
their instances. Using only two meta-levels, types
and instances have to be defined in the same meta-
level, yielding more complex system descriptions, as
shown in Figure 2. Moreover, when modelling a
particular application, either the designer has to
manually instantiate the appropriate features and ports
for each component instance according to its type and
ensure their correctness – which makes the construction
of models tricky – or the DSL developer has to provide
ad-hoc mechanisms for instantiation – which makes
the development of DSLs difficult. On the contrary,
with deep languages the framework itself provides

an automatic instantiation mechanism for component
types (i.e. component instances are created with all
necessary slots) and includes type checking for these,
leading to simpler descriptions as shown in Figure 3.

The separation of component types and instances in
two different meta-levels has the additional advantage
that it cleanly separates specification from usage,
tasks that are usually carried out by different
people. Thus, technology experts encapsulate reusable
components as models with potency 1, together with
code generation EGL templates for each component.
Then, domain experts select and connect instances of
these components to build concrete applications (see
Figure 1). While in two-level approaches both types of
users work at the same meta-level, in deep languages the
technology expert effectively performs domain specific
meta-modelling. Our separation in different layers for
each role automates the construction of customized
environments in a natural way

We obtained other benefits by using a multi-level
approach in our scenario. For example, in the Data
view, we define data schemas and instantiate them with
actual data, which permits type checking of the data.
Moreover, our code generator produces JavaScript
code that populates the appropriate data structures.
Working directly in JavaScript one would populate the
tables directly without type checking. Although this
double instantiation can be emulated in two meta-levels,
we would find the same difficulties as in the Component
view. Therefore, multi-level meta-modelling enabled a
simpler modelling of system aspects that contained the
type-object pattern.

7.2. Lessons learnt

While deep meta-modelling presents advantages when
modelling parts of a system that can be naturally
expressed in three meta-levels (like the Component
and the Data views), when we started to build the
deep languages for the running example we realized
that additional mechanisms were necessary to obtain
simpler descriptions. Deep references (Figure 22(a))
permit establishing connections to clabjects whose
direct type is unknown, and they are useful to solve
heterogeneities in meta-level depth when models of
different potency are related. The leap semantics
of potency (Figure 22(b)) is a shortcut to avoid
identity instantiation at intermediate meta-levels. It
is especially useful to define connectors able to link
any two indirect instances of Component at potency
0. Finally, we have proposed the uniform handling
of inheritance at every meta-level (Figure 22(c)). In
particular, the inheritance between pure instances at
potency 0 permits the definition of libraries with
predefined clabject configurations.

In addition to these mechanisms, during our work
with deep languages we have also discovered some
design patterns for deep meta-modelling. For instance,
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FIGURE 22: Novel techniques for deep meta-modelling

the “stratify potency” pattern organizes the fields in a
hierarchy of clabjects according to their potency. It
can be used when the definition of a deep language
includes a hierarchy of clabjects, and one of the children
clabjects in the hierarchy requires the potency of a field
defined in the parent to be different. For example,
in our language for components, a Flash component
defines at potency 1 all relevant information needed
for its use, therefore it is redundant to instantiate it
at potency 0 as this does not add new information.
Thus, while JavaScript and Applet have potency 2,
Flash should have potency 1. However, all these
clabjects share some characteristics. In this case, our
pattern suggests breaking the Component clabject in a
superclass with potency 1 and a subclass with potency
2. While Flash inherits from the superclass, both
JavaScript and Applet inherit from the subclass. The
result of applying a refactorization towards this pattern
is shown in Figure 23. In the figure, Flash gives
a default initial value to attributes gencodetemplate

and gencodetemplatecanvas (common to all instances
unless they explicitly give a value to these fields) and
defines a number of additional fields with potency 1.

ComponentType
ident: String
gencodetemplate: String
gencodetemplatecanvas: String

@1

Component
name:String

@2 Flash
@1

gencodetemplate =“Flash.egl”
gencodetemplatecanvas =“Flash_canvas.egl”
movie : String

JavaScript Applet
codeBase: String
params:String[*]

@1

@2 @2
movie : String
menu : boolean = false
…

FIGURE 23: Applying the “stratify potency” pattern
to accommodate the Flash component

As we have seen, deep meta-modelling offers a more
flexible solution for defining complex languages that
include both types and instances. We are not claiming
that two-level approaches cannot deal with them, but
would require to manually add ad-hoc functionality
to standard two-level meta-modelling frameworks to
emulate a type system within a single meta-level.

This functionality is built-in in MetaDepth and
available across different meta-levels. However, a
multi-level framework introduces new problems, most
notably concerning the connection of models at different
potencies and the heterogeneity in the depth of clabjects
with same type. Here we have presented some
techniques to solve them.

8. RELATED WORK

In this section we compare our proposals with existing
works in the literature. First, we review multi-
level systems without deep characterization. Then,
we review systems supporting deep characterization.
Finally, we analyse works with respect to each extension
we proposed in our framework.

Multi-level meta-modelling systems. Multi-level
meta-modelling can be traced back to the eighties
in knowledge-based systems like Telos [28] and de-
ductive object base managers like ConceptBase [29].
ConceptBase implements the object model of a
Datalog-based variant of Telos. It supports instan-
tiation chains of arbitrary length and definition of
(Event-Condition-Action) rules and integrity con-
straints, but not deep characterisation (i.e. the ability
to influence meta-levels below the immediate one).
Moreover, being from the database tradition, it lacks
integration with model manipulation languages en-
abling its use in MDE, like template languages for
code generation, and does not provide advanced mod-
elling mechanisms as the new ones we have proposed
in Sections 5 and 6.

A more recent approach to multi-level meta-modelling
is the use of powertypes [20]. The instances of
powertypes are also subtypes of another type, hence
having both type and object facets. Again, this
approach does not consider deep characterization
either.

The VPM framework [27] formalizes multi-level meta-
modelling by a refinement relation. Entities are viewed
both as sets (a type that defines the set of its instances)
and elements of a set (an instance in the set of
instances defined by its type). Thus, as in multi-level
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meta-modelling, an element retains both class and
instance facets. In VPM, an entity A refines another
entity B if A.id ∈ B.set and A.set ⊆ B.set, where
A.id denotes the entity A viewed as an element and
A.set denotes A viewed as a set. This is close to our
discussion in Section 6.3, where we treat clabjects as
both elements and sets. While VPM is realized in the
VIATRA tool, it lacks deep characterization and does
not consider attributes or constraints.

Deep characterization. There are some frameworks
based on the seminal ideas of Atkinson and Kühne [6]
regarding multi-level meta-modelling, but few of
them report on the modelling of complex, real life
systems and its use with MDE processes. For
example, [10] presents an ongoing effort to build
a multi-level framework based on Ecore, effectively
including all ontological meta-levels in one level.
This is similar to [30], where MOF is extended
for multiple meta-levels to enable XML-based code
generation. Nivel [31] is a deep meta-modelling
framework based on the weighted constraint rule
language (WCRL). OMME [32] is a prototype that
implements advanced modelling constructs like a dual
ontological/linguistic typing, deep characterization
and powertypes. However, none of these works
describe primitives to attack scalability of complex,
multi-view systems described with deep languages, as
we have done in this paper.

The work in [8, 9] is one of the few attempts
to use a multi-level framework in practice. The
framework is used in the context of test beds for
industrial automation systems. While [9] presents a
technique to efficiently navigate between several meta-
levels, in [8] the authors propose a non-strict meta-
modelling approach where the instantiation relation
is always allowed to jump arbitrarily between meta-
levels. In the present paper we have provided a
number of systematic techniques to apply deep meta-
modelling in practice and, in particular, our leap
semantics for potency can solve some of the problems
observed in [8], but adhering to strict meta-modelling.
Another difference is that we retain the ability to
require an explicit instantiation at every meta-level
(standard potency) or allow phantom instantiation
(leap potency). Finally, the examples in [8] consider
one single model, but do not tackle the problems that
arise when connecting languages with arbitrary depth.

Semantics of potency. One of the contributions of
this paper is the realization of the different possible
semantics for potency: clabject-like or field-like (leap
potency). To the best of our knowledge, this difference
is not realized in previous works. For example,
DeepJava [11] extends the Java language with deep
characterization through potency, which can be added
to attributes, methods and classes. However, the
semantics of potency for attributes with non-primitive

type is unclear (either leap or clabject-like semantics).
In [24], the authors explain the need to have the same
structure to model associations (connectors) and their
instances, but they do not discuss the semantics of
potency attached to these. Instead, connectors are
modelled with clabjects, hence receiving a clabject-
like instantiation. None of these frameworks offer the
two kinds of semantics.

Deep references. Similar to our deep references,
DeepJava introduces abstract type declarations [11].
Variables of an abstract type may contain indirect
instances of any potency. In contrast, our deep
references can specify the potency required for these
instances, providing more control when defining a deep
language. This is especially useful to interconnect
languages with different depth, where it is usual
to specify the potency required from some external
clabject. For instance, in Listing 9, we need to
express the requirement that the Component instances
should have potency 0. Using DeepJava’s abstract
types would prevent from specifying such a constraint,
allowing the connection with Component instances of
potency 1 as well.

Inheritance and instantiation. We are not aware of
any previous work discussing the uniform treatment of
inheritance at any meta-level, nor any practical mod-
elling framework supporting inheritance at potency
zero. The proposal of merging classes and objects is
present in systems like SELF [26] and its prototype-
instance mechanism. Just like VPM, SELF unifies the
inheritance and instantiation relations, while their dif-
ferences are stressed in [33]. This latter work proposes
abstract objects and a mechanism to apply inheritance
at the instance level. An abstract object is a represen-
tative of a set of instances which are identified through
an equivalence relation. While that work gives differ-
ent semantics of inheritance at the instance and type
levels, here we provide a uniform semantics to inheri-
tance at every meta-level. In our case, a parent (pure)
instance clabject can be considered as the represen-
tative of the set of all clabjects that inherit from it.
Hence, the field values of the parent clabject effectively
define the equivalence relation. In [33] this proposal is
given theoretically, but here we provide a working im-
plementation with further mechanisms like a transpar-
ent overriding of attribute values defined in the parent
by children clabjects.

The GME modelling environment [34] supports the
definition of templates, or prototypes, which can
be cloned to enable reuse. Modifying one of these
templates produces a modification of its clones as
well. This is related to our inheritance between pure
instances, where parent clabjects act like prototypes
for children clabjects. In [35], the authors propose
using this cloning mechanism to build libraries of
model elements. However, note that cloning is
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different from instantiation: while cloning creates
a structural copy of a template, a model is not
structurally equal to its meta-model because meta-
models allow variability in the instantiated models,
like the number of references of a given type. For
this purpose, the authors of [35] allow the inclusion
of scripts to parameterize certain aspects of the clone,
like the number of references of a given type. Still,
the proposed prototype-cloning mechanism does not
emulate fundamental aspects of instantiation. For
example, meta-models declare attribute types and
models provide values to the attributes; and meta-
models may include integrity constraints which are
evaluated in the models. Including such aspects in a
cloning mechanism would lead to the construction of
a type system emulating two meta-levels in only one,
which is the strategy followed in [10] to implement a
multi-level system in EMF.

Domain-specific meta-modelling. The idea of
domain-specific meta-modelling was already sug-
gested in our previous work [12] and by some other
authors using a two-level approach [13]. In the
present paper, we have provided richer modelling
support for domain-specific meta-modelling. We be-
lieve that a multi-level meta-modelling framework is
more suitable for this purpose, as it does not require
transforming models into meta-models to enable
instantiation at deeper meta-levels.

Altogether, in this paper we have proposed novel
meta-modelling mechanisms enabling the use of deep
meta-modelling with MDE processes in complex
scenarios. On the conceptual side, the contributions
of the paper are a characterization of two types of
semantics for potency (clabject-like and field-like or
leap), deep references to enable the connection of
model elements at different potencies, and a uniform
treatment of inheritance at every meta-level. On the
practical side, we have implemented these concepts in
the MetaDepth tool, augmented it with a template
language for code generation, and used the system in a
complex project consisting on the automatic generation
of web applications from models.

9. CONCLUSIONS AND FUTURE WORK

In this paper we have demonstrated the practical
use of deep languages and MetaDepth in a project
that applies MDE to the development of collaborative
web applications. In this scenario, where the type-
object pattern appears, the literature already reported
advantages of the use of deep meta-modelling regarding
facilities for instantiation. However, we have found
that for this meta-modelling paradigm to be usable
in practice, some extra features are needed, like
references to deep clabjects, inheritance at every
meta-level and phantom instantiations through a leap,
field-like semantics for potency. Moreover we have

proposed a design pattern to control the meta depth
of clabjects, and shown some issues when integrating
a template language for code generation. In our
view, the project presents challenges that would
have required considerable effort using a two-level
framework. However, for other domains and scenarios,
a two-level description is enough. Actually, our
meta-modelling system supports two levels regarding
linguistic instantiation, but an arbitrary number of
ontological meta-levels.

As for future work, we would like to extend
the domain-specific meta-modelling capabilities of
MetaDepth with richer constructs. For example,
we would like to investigate less restrictive uses of
inheritance at intermediate meta-levels. We will also
tackle the construction of an Eclipse plug-in for the
development of MetaDepth models and its use for
practical MDE. We are also working on an algebraic
formalization of multi-level meta-modelling and deep
characterization [36].

Regarding the project, the languages we have pro-
posed use concepts of the solution space (component,
page, presentation). We are considering building differ-
ent DSLs for different kinds of collaborative applications
so that these can be described from the problem do-
main point of view. Then, we would need to transform
these models into the languages we have presented, and
for this purpose we would need to integrate a model-
to-model transformation language withinMetaDepth.
We are also building a collaborative web tool for the
construction of collaborative web applications. The tool
is based on questionnaires, from which models are au-
tomatically generated and fed into MetaDepth, which
produces the final web application [37]. The tool, the
presented examples and a sampler of generated collab-
orative applications are available at: http://astreo.

ii.uam.es/~jlara/metaDepth/Collab.html.
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