
Reusable Abstractions for Modelling Languages

Juan de Laraa, Esther Guerraa, Jesús Sánchez Cuadradoa

aComputer Science Department, Universidad Autónoma de Madrid (Spain)

Abstract

Model-Driven Engineering proposes the use of models to describe the relevant aspects of the
system to be built and synthesize the final application from them. Models are normally described
using Domain-Specific Modelling Languages (DSMLs), which provide primitives and constructs
of the domain. Still, the increasing complexity of systems has raised the need for abstraction
techniques able to produce simpler versions of the models while retaining some properties of
interest. The problem is that developing such abstractions for each DSML from scratch is time
and resource consuming.

In this paper, our goal is reducing the effort to provide modelling languages with abstraction
mechanisms. For this purpose, we have devised some techniques, based on generic programming
and domain-specific meta-modelling, to define generic abstraction operations that can be reused
over families of modelling languages sharing certain characteristics. Abstractions can make use
of clustering algorithms as similarity criteria for model elements. These algorithms can be made
generic as well, and customised for particular languages by means of annotation models.

As a result, we have developed a catalogue of reusable abstractions using the proposed tech-
niques, together with a working implementation in the MetaDepth multi-level meta-modelling
tool. Our techniques and prototypes demonstrate that it is feasible to build reusable and adaptable
abstractions, so that similar abstractions need not be developed from scratch, and their integration
in new or existing modelling languages is less costly.

Keywords: Model-Driven Engineering, Domain-Specific Modelling Languages, Abstraction,
Genericity, Domain-Specific Meta-Modelling,MetaDepth.

1. Introduction

In Model-Driven Engineering (MDE), models are actively used to conduct the different
phases of the project, being employed to specify, simulate, optimize, test and produce code
for the final systems [56]. Models are sometimes specified using general purpose modelling
languages, like the UML, but in order to unfold the full potential of MDE, Domain-Specific
Modelling Languages (DSMLs) tailored to specific areas of concern are frequently used [33].
Hence, a common activity in MDE is the development of environments for DSMLs, supporting
the different usages of models during the project.

Email addresses: Juan.deLara@uam.es (Juan de Lara), Esther.Guerra@uam.es (Esther Guerra),
Jesus.Sanchez.Cuadrado@uam.es (Jesús Sánchez Cuadrado)

Preprint submitted to Information Systems June 5, 2013

As the application domain becomes complex, models tend to become complex as well. This
fact hinders the development, understanding and analysis of models. To tackle this issue, re-
searchers have developed abstraction techniques directed to reducing model complexity for par-
ticular notations and purposes [45, 48, 50, 52, 53, 58]. In our setting, an abstraction is an oper-
ation that produces a simpler model that retains certain properties of interest from the original
model.

Frequently, different notations can be abstracted following similar patterns. For example, a
common abstraction consists on aggregating a linear sequence of connected elements, which can
be applied to notations in different domains: e.g. to a class diagram to flatten an inheritance hier-
archy, or to a process model to encapsulate a sequence of activities. Additionally, some abstrac-
tions are specific to particular domains. For example, the abstractions for Petri nets [45] produce
smaller nets preserving liveness, safeness and boundedness, being easier to analyse. Similarly,
there are techniques to produce abstracted transition systems from finite-state programs for the
purpose of model-checking [4], or abstractions specific to process modelling [48, 52, 53] which
produce more comprehensible models or facilitate their verification [58]. The latter abstractions
are indeed applicable to any notation with a workflow-like semantics, like BPMN [46] and Ac-
tivity Diagrams [47].

In MDE, the abstract syntax of DSMLs is defined through a meta-model and the needed ab-
straction operations are defined over its elements. This enables the application of the abstractions
to the instances of a specific meta-model, but not to the instances of other meta-models even if
they share essential characteristics with the former one. Therefore, even though one can develop
abstractions for the meta-model of a particular DSML, like the OMG’s BPMN 2.0 [46], these
cannot be used for other related DSMLs, like YAWL [58], Activity Diagrams or different BPMN
variants. As a result, the same abstraction operations need to be encoded repeatedly for different
variations of similar meta-models. Hence, a catalogue of generic abstractions that can be reused
across meta-models would save significant effort in defining advanced environments for DSMLs.

In previous works [7], we developed a technique for the reutilization of model management
operations based on the idea of having an extra level of indirection. Thus, operations are not
defined over concrete meta-models, but over so-called concepts which gather the requirements
that a meta-model should fulfil to make the operation applicable to the meta-model instances. In
our approach, concepts have the form of meta-models, and the operations defined over a concept
can be reused by binding the concept to any meta-model satisfying the concept requirements.

Another way to enable reuse is multi-level meta-modelling [2, 6, 38], a modelling paradigm
that allows working with an arbitrary number of meta-levels, and not just two (i.e. model/meta-
model). It can be used to build domain-specific meta-modelling languages [8] for a particular
domain (e.g. the process modelling domain), which are then used to build DSMLs for different
applications within the domain (e.g. software process modelling or educational process models).
This approach promotes reuse because we can define operations over the domain-specific meta-
modelling language, and the operations become applicable to any DSML within the domain.

Additionally, abstraction operations often use similarity criteria to decide whether a set of
elements can be abstracted together. While there are many works in clustering techniques [5,
27, 40, 49], their implementation in a way that allows their application to arbitrary meta-models
remains a challenge in MDE.

In this work, our goal is to facilitate the development of abstractions for modelling languages
in the context of MDE, for which purpose we rely on the above mentioned techniques. In partic-
ular, we first introduce a classification of abstractions for modelling languages, and then present
a catalogue of generic, reusable abstractions, applicable to sets of meta-models. We consider

2

four abstraction types: aggregation, merge, deletion and view generation. Orthogonally, each
abstraction can be either horizontal if it is applicable to meta-models of different domains, or
domain-specific if it is applicable to families of meta-models sharing semantics (e.g. languages
similar to Petri nets or workflow languages). Our abstractions are: (a) reusable, as they can be
applied to several modelling languages; (b) customizable, as some aspects can be configured,
like similarity criteria or attribute aggregation operations; and (c) adaptable, as they provide ex-
tension mechanisms for languages lacking support for encapsulation or aggregation. We have
validated these ideas by an implementation in the MetaDepth tool [7] and their application to
several case studies.

This paper is an extended version of [9], where we have expanded our catalogue of ab-
stractions and the set of examples, we have improved our tool support, we have evaluated the
generality of our approach, and we apply two additional techniques to the definition of reusable
abstractions: domain-specific meta-modelling as a basis to build abstractions that are applicable
to families of modelling languages within a domain, and annotation models as a configuration
mechanism for those auxiliary clustering algorithms used by generic abstractions. We demon-
strate the use of annotation models through the definition and reuse of similarity abstractions
making use of formal concept analysis [5], relational concept analysis [27] and k-means cluster-
ing [40].

The rest of the paper is organized as follows. Section 2 introduces a categorization of abstrac-
tions for modelling languages. Section 3 presents some techniques to define generic abstractions,
which we use to define a catalogue of reusable abstractions in Section 4. Afterwards, Section 5
presents annotation models to configure abstractions that make use of clustering techniques.
Section 6 shows an implementation of our proposal using MetaDepth. Section 7 evaluates its
generality to implement existing abstraction proposals. Section 8 compares with related research,
and Section 9 draws some conclusions and lines for future work.

2. Classifying Abstractions for Modelling Languages

In this section we present a categorization of abstractions for modelling languages. This
classification has been built after a thorough analysis of the abstractions provided by or developed
for languages of extended use like BPMN [48, 52, 53], as well as from our own experience on
the construction of DSMLs [10, 19, 20, 21].

In our setting, a model abstraction is an operation that reduces the complexity of some aspect
of a model. Its purpose can be to increase the comprehensibility of a large model, or to reduce
the size of a model to ease its verification while retaining certain properties of interest, among
others. An abstraction may imply the deletion of existing model elements that are considered ir-
relevant for the abstraction operation, as well as the addition of new ones – like aggregate objects
or hierarchical constructs – that encapsulate existing elements which share certain features. The
addition of new elements may influence the way in which a model is visualized, e.g. enabling
to zoom-into or to hide the aggregated objects, but the focus of this work is not on model visu-
alization, which we touch only briefly in Section 6. In contrast to refactorings [13], abstractions
do not necessarily need to preserve the observed behaviour in the abstracted model, although
some abstractions do preserve some behavioural properties, for instance when the purpose of the
abstracted model is to facilitate analysis [58].

We classify abstractions according to two factors: applicability and behaviour. According to
their applicability, we distinguish two types of abstractions:

3

• Horizontal abstractions, applicable to modelling languages of (perhaps very) different do-
mains. For example, an abstraction that encapsulates a sequence of model elements can be
used to flatten a linear inheritance hierarchy in a class diagram, or to simplify a business
process model by creating a subprocess that groups a sequence of consecutive activities.

• Domain-specific abstractions, specific to a family of DSMLs sharing semantics. Examples
of this kind of abstractions include the reduction techniques for Petri nets [45] and the ones
for workflows [58]. Being domain-specific, they can take into account the semantics of the
languages in the domain and ensure the preservation of some properties, which permits
their use for verification purposes. For example, the reduction techniques in [45] result in
simpler models that preserve liveness, safeness and boundedness.

��

��

��

��

��

e

e

e

f

��

��

��

��

��e

f

p1

p2

t p

(a) Merge (b) Aggregation (c)

�����������

��	

����
��

����

	���	�

Report

start

Perf
meeting

Eval
report

end

(c) Deletion (d) View

Figure 1: Classification of abstractions according to their behaviour.

Orthogonally, we identify four abstraction types according to their behaviour. The four types,
illustrated through examples in Figure 1, are the following:

• Merge. In this kind of abstraction, a set of model elements is replaced by one element of the
same type which collects the properties of the merged elements. In this way, the resulting
model becomes more coarse-grained. This abstraction is widely used for verification. For
example, the reduction rules for Petri nets [45] merge groups of places or transitions into
a unique place or transition collecting the arcs of the merged elements. A schema of the
“Fusion of Series Places” reduction rule [45] is shown in Figure 1(a), where the places
p1 and p2 and the transition t have been merged into a new place p. The resulting net
preserves liveness and boundedness, being easier to analyse as it is smaller.

In some cases, the element replacing the group is assigned property values that result from
a calculation using the properties of the merged elements. For example, some reduction
rules for delay time Petri nets [30] merge transitions, and the timing of the new replacement
transition is calculated using the timing of the fused transitions.

• Aggregation. In this case, a set of model elements is grouped hierarchically under a higher-
level element, perhaps of a different type, which serves as an aggregate. An example is
the encapsulation of a linear sequence of activities in a process model into a subprocess,
obtaining a more comprehensible, hierarchical model. Properties of the aggregate object
may be calculated using properties of the aggregated objects. As a difference with merge,
here the aggregated elements are not deleted, but they are just placed at a different ab-
straction level as children of an aggregate object, yielding a more structured model. In

4

contrast, merge does not produce more structured models with elements at different lev-
els of abstraction. Nonetheless, aggregation and merge are similar in a sense, because if
we disregard the aggregated elements in the aggregation and only consider the introduced
aggregate object, then we also obtain a more coarse-grained model.

Figure 1(b) shows an aggregation example, where three state machine states that have the
same output transition events are aggregated under a common state, and a unique output
transition is created for the introduced state.

• Deletion. This abstraction deletes elements that are not considered relevant or that do
not modify some observed property of a model. An example is the elimination of self-
loops in Petri nets [45] (see Figure 1(c)) and workflow nets [58]. Other examples are the
deletion of the products in a process model, so that only the flow of activities (and not
the produced/consumed artefacts) is retained, or the elimination of all process paths with
non-maximal cost in a business process [53].

• Views. In this case, the abstraction produces a new model (called view) which may be ex-
pressed using the same language as the original model or a different one. The view discards
those features of the original model which are irrelevant for the aim of the abstraction. This
is the most general type of abstraction as it includes the previous ones, whenever the lan-
guages of the original model and the view are the same. There are many examples of this
type of abstraction for verification [21], where the view uses a language with a rich body of
theoretical results enabling the analysis of the source model. Transforming BPMN models
into Petri nets is an example of this abstraction kind, which we illustrate in Figure 1(d).
The generated Petri net reflects the task flow, but abstracts away the information regarding
the performers of the activity and the produced/consumed artefacts.

Once we have seen the different model abstraction types, the next section discusses our ap-
proach to build them in a generic way, so that they can be reused for several DSMLs.

3. Building Generic Abstractions

MDE is a mostly type-centric approach because model manipulations need to be defined over
the types of a concrete meta-model, becoming hard to reuse for other meta-models. The follow-
ing subsections review some approaches to genericity that we will use in the rest of the paper
to make abstractions reusable for different meta-models. While genericity through concepts and
mixins was initially proposed in [7], genericity of model operations defined over domain-specific
meta-modelling languages and annotation models (see Section 5) are novel contributions in this
work.

3.1. Concepts
Assume we need an operation to simplify business process models by creating an aggregate

object that abstracts the flow elements between two complementary gateways (e.g. a parallel
fork and a join). Currently, there is a plethora of different business process modelling notations
like Activity Diagrams, Event-driven Process Chains [55], YAWL, the OMG’s BPMN 2.0, and
different variations of BPMN like the Intalio’s BPM modeller1. Hence, one needs to select a

1http://www.intalio.com/bpms/designer

5

particular meta-model and implement the operation for it, but then this operation is not applicable
for the other meta-models.

To overcome this limitation, we propose building a generic model abstraction operation that
can be applied to a family of meta-models. For this purpose, we do not build the operation
over the specific types of a meta-model, but over the variable types defined in a so-called struc-
tural concept which gathers the requirements that a meta-model should fulfil to qualify for the
operation. Concepts have the form of a meta-model, but their elements (classes, attributes and
references) are interpreted as variables.

A generic operation is used by binding its associated concept to a meta-model, as shown in
Figure 2. The binding defines a 1-to-1 mapping from each class, attribute and reference in the
concept to a class, attribute and reference in the meta-model, respectively. It needs to fulfil some
well-formedness rules to ensure a correct application of the generic operation. For example, if
a class c in the concept is bound to a class c′ in the meta-model, the attributes and references
in c must be bound to features defined in c′ or in some superclass of c′. We can also map two
classes c and d in the concept to a unique class in the meta-model provided it contains all features
demanded by c and d. Moreover, the binding must preserve any subtyping relation defined in
the concept, so that if two classes are related though inheritance in the concept, so must be the
bound meta-model classes. And conversely, if two classes are not related through inheritance in
the concept, the bound meta-model classes cannot be related through inheritance either. In [7],
there is a detailed description of all well-formedness rules for bindings.

Once defined, the binding induces a re-typing of the generic operation, which becomes ap-
plicable to the instances of the bound meta-models, obtaining reusability (the same operation
becomes applicable to several meta-models).

�����
*

*src

tar

Workflow
structural concept

�����→�	�
����
�����→���
�����	�

���������→�
��������
����
��→����
��
���→��
������
���→���������
���	�→�	�
�	������

�����

��������� ����
��

*

�����→������������
�����→������������
���������→���
��
���������������
����
��→������	����
���→��
���
���→������
���	�→����

��������� �������� 	��!"#$%
	�� "�$�� ����
��&�		"##$%$&&&$'
(

'

generic abstraction

typed on

* child

targetRef

sourceRef

**

���	
	�� �
���
�

��
��������������������

�����������

��������

����
	���

*

��������

���
����

�	�

flowElements

������
���

����

�������

����

target

*

source

*

�������������������������������

���	
	��

����

�
��������

*
���	
	������

���
��
���������������

node

Figure 2: Generic model abstraction operation defined over a structural concept.

As an example, Figure 2 defines the generic abstraction operation abstractBlock using the
types of the concept Workflow. The operation creates an aggregate object abstracting the flow
elements between two complementary gateways. The concept gathers the variable types used by
the operation, like Gateway and Aggregate, but note that it does not include a class representing

6

a task (even though workflow languages usually include such a class) because the operation does
not need to distinguish any flow node other than gateways. In this way, the concept and its
bindings are kept as simple as possible. Once defined, we can bind the concept to different meta-
models, like those of the OMG’s BPMN 2.0 and the UML 2.0 Activity Diagrams, enabling the
application of the abstraction operation to the model instances of these notations. The figure
shows the binding for both meta-models. For BPMN, WNode is bound to FlowNode and WEdge

to SequenceFlow. The binding permits certain heterogeneity in the subtyping, as Aggregate is
a direct subtype of WNode in the concept, but SubProcess is an indirect subtype of FlowNode
in the BPMN meta-model.

The definition of the binding in the example, which consists of 7 mappings, allows reusing
an abstraction operation of several hundred lines of code (this latter not shown in the figure).
Thus, the gain of reuse is high, and further gains are possible if several abstraction operations
are defined over the same concept. Moreover, the implementation details of the operation do not
need to be understood by the reuser, who only needs to bind the concept elements to the concrete
meta-model elements, that is, to establish the role played by the concrete meta-model elements
in the abstraction operation.

3.2. Configuration and adaptation to the modelling language

A structural concept has the form of a meta-model and reflects a design decision that some
meta-models could implement differently. For example, the Intalio’s BPMN meta-model repre-
sents all kinds of flow nodes through a unique class Activity with an attribute to discriminate
the type. As a consequence, we cannot bind the previous structural concept Workflow in Figure 2
to this meta-model. Our solution to widen the range of boundable meta-models for a generic
operation is to use so-called hybrid concepts [7], which abstract away the accidental details in-
troduced by the specific choice of structure in the concept behind a suitable interface. This
interface consists of a number of operations associated to the classes of the concept. Thus, hy-
brid concepts are like structural ones but require a number of operations from the elements they
contain. The binding is then obtained by mapping the elements and implementing the operations
declared in the concept.

����� �����

�	
���
�������������

�	��������������������

���������������

����� ���������������������

���������������

���������������

Workflow-2 hybrid concept

operation
return self.activityType = SubProcess;

�����
�����

binding

typed on
operation

return self.activityType = SubProcess;
}
…

��������� ��	��������������
	�� ����� ����� ���������
�	 �� �	��������������� �!�!

"
!

generic abstraction

�����	

����#���

����#�����$������	�%�

���
��&�������%

�'�&����		"!

��('����

����

source

target

in
co

m
in

g
E

dg
es

ou
tg

oi
ng

E
dg

es

operation Activity isAggregate(): boolean {
return self.activityType = SubProcess;

�����→����#���
�����→��('��������

�������
������
�	�����

binding

operation Activity isAggregate(): boolean {
return self.activityType = SubProcess;

Figure 3: Binding to Intalio’s BPMN meta-model with a hybrid concept.

Figure 3 shows the definition of the hybrid concept Workflow-2, which is a more flexible
version of the structural concept presented in Figure 2, as it imposes less structural requirements.

7

In order to bind this concept to the Intalio’s BPMN meta-model we need to implement the oper-
ations required by the concept. For instance, the figure shows the implementation of operation
isAggregate, which in this case returns true whenever the attribute activityType of an ac-
tivity takes the value SubProcess.

Finally, sometimes an abstraction needs to be configured with similarity criteria or with a
function to perform some computation over the attribute values of the abstracted elements. To
express these configurations we rely on the well-known notion of hook, typically used in the
Template Method design pattern [15] to leave the variable parts of an algorithm open. In the
case of our abstractions, hook operations provide a default implementation, and only need to be
implemented during the binding if a special behaviour is required. They are available in both
structural and hybrid concepts. For instance, in Figure 3, operation aggregate in class WNode
is a hook to customize an aggregation operation on attributes (e.g. adding up a time attribute in
all aggregated nodes).

3.3. Extending the modelling language

Some abstraction operations create an aggregate object grouping a set of similar or related
model elements. However, some notations are not designed with hierarchical or encapsulation
elements, and therefore we cannot apply these abstractions to them, as they lack a class acting as
aggregate. To overcome this limitation, our solution is to define a so-called mixin layer, which is
a parameterized meta-model that contains those auxiliary elements needed by an operation [7].
Then, we use concepts to express the requirements that a meta-model should fulfil to become
extendible by the mixin.

defined over

�����

*

�����

�������

*

*src

tar

���	
��

����

binding

meta

�

�

����

Workflow-3 concept

Mixin

requirements
for the mixin

extension
points

*

������	�
 ������������������
��� �����
�� ������������

!

generic abstraction

typed on

extended meta

*

applicable to

�

���������

���	
��

����

���	
�� "��#����

$���
*
*in

out
meta-model for Factories

mixin application�

�����	

extended meta-model

���������

���	
�� "��#����

$��������	

*
*in

out

Figure 4: Generic model abstraction operation defined over a mixin.

As an example, the mixin in Figure 4 adds an aggregate class to any meta-model boundable
to the Workflow-3 concept. As a difference from the previous examples, the Workflow-3 concept
does not demand the existence of an aggregate class in the bound meta-models, but this class
will be added by the mixin. The generic operation is defined over the glueing of the mixin and
the concept (label 2 in the figure) through the extension points or parameters of the mixin (label
1). In the figure, class WNode is the only parameter of the mixin. The rest of elements of the

8

mixin will be added to any meta-model to which we bind the concept. In this way, we can bind
the concept to meta-models like Petri nets, or to DSMLs to represent plant factories like the one
shown in the figure (label 3). Applying the mixin to the DSML (label 4) adds the aggregate class
to its meta-model, and hence the abstraction becomes applicable to the meta-model instances.
Moreover, this kind of mixin preserves the compatibility of models conformant to the original
meta-model with the extended one.

3.4. Considering families of modelling languages

Some abstractions are horizontal, applicable to a large range of unrelated DSMLs in different
domains, whereas some others are applicable to families of modelling languages within the same
domain. A way to construct such families of DSMLs is through the use of appropriate domain-
specific meta-modelling (DSMM) languages which provide primitives of the specific domain [8].
Standard modelling languages are defined through a meta-model and are instantiated at the meta-
level below. DSMM languages are defined through a meta-model as well, but can be instantiated
at the next two meta-levels below, i.e., they span three meta-levels.

Figure 5 shows an example. The upper part corresponds to a simple DSMM language for
process modelling which makes available meta-modelling primitives such as Task, Artifact
or Performer. These domain-specific primitives make process modelling more natural than
using all-purpose primitives provided by general-purpose meta-modelling languages, like Class
or Association [18, 28]. In this way, we can use the DSMM language to build DSMLs for
particular applications within the process modelling domain, like software processes (middle
left) or educational processes (middle right), which in their turn can be instantiated to define
particular software and educational models (below).

��������� ������������	����
��

	��
���� ����	�������
���
����
�

�

abstraction

domain
meta-modelling language

for process modelling

*

����

performs

*
seq

���	�����

������������

software process modelling language

�������������� ������������

��������
����	���

instance of

typed on

Family of
Modelling Languages

ap
pl

ic
ab

le
to

software process models

�������������������������� ������������

������������
���	�����

����������
���	�����

���������
���	�����

������
����	���

����	���

��������������������

 �!���������� �������������

instance of

ap
pl

ic
ab

le

domain-specific
modelling language

for process modelling

����	���*

*
out

in

performs

���	�����

����������
����	���

educational modelling language

"#��������	���

instance of

…
����	���

����	���
��"#��������$�%��������

����!�������	�����$�%���������	�����

&����"#��������

educational models

instance of

…
�#'����"#�����!���$�%��

 ������$�%����

Figure 5: Model abstraction operation defined over a domain-specific meta-modelling language.

In this context, we can define abstraction operations over the primitives provided by the
DSMM language (upper level), and the operations become applicable to all models of the DSMLs
built with the DSMM language (lower level). This is possible as the objects in the lower level

9

are indirect instances of the top-level ones. For instance, john is an instance of Analyst, and
Analyst is an instance of Performer; hence, john is (indirectly) a Performer. In this way, all
abstraction operations defined over the DSMM language are directly reusable by the family of
languages built with it.

Now that we have presented the techniques we propose to make abstractions generic, cus-
tomizable and adaptable, in the next section we provide a catalogue of reusable abstractions
defined with them.

4. A Catalogue of Generic Abstractions

One of the aims of the present work is to make easier the incorporation of abstraction capabil-
ities and operations to existing or new modelling languages, so that these operations do not need
to be developed from scratch. For this purpose, based on the techniques presented in the previous
section, we have built a catalogue of generic abstractions that a designer can select and customise
for a particular modelling language. Our abstractions are generalizations of the domain-specific
ones we have found in the literature, and can easily be customised for a particular modelling
language by identifying the element types participating in the abstraction.

Technically, our generic abstractions are operations defined over suitable concepts to be
bound to the meta-models of specific modelling languages. To increase the reuse opportuni-
ties of each abstraction type in the catalogue, we provide three different binding possibilities for
each one: (i) from a structural concept, which is the simplest approach when the structure of the
concept and the structure of the meta-model are similar, (ii) from a hybrid concept, which gives
freedom regarding the particular structure of the bound meta-model, and (iii) from a concept
associated to a mixin in case the bound meta-model has no support for abstractions, e.g. it lacks
a class to represent object aggregations, in which case the mixin extends the meta-model with
such a class, enabling the abstraction application. Finally, we provide two implementations for
each abstraction operation: (i) one performing the abstraction on the input model in-place, and
(ii) another one generating a view (i.e. a different model) with the result.

In the remaining of this section we present our catalogue of abstractions, classified depending
on their applicability: horizontal (i.e. general) and domain-specific. We do not claim that this
catalogue is complete, as we expect to add new abstractions in the future. Nonetheless, we will
show some examples illustrating that our current catalogue can be used to customize meaningful
abstractions for well-known notations.

4.1. Horizontal abstractions

Source parallel. This operation abstracts a maximal set of objects which is referenced from the
same source objects. There are two variants of this abstraction: aggregation and merge.
The aggregation variant creates an aggregate that encapsulates all objects with the same
source, whereas the merge variant replaces the parallel objects by another one of the same
type (or a subtype). In both cases, all references from/to the abstracted objects are repli-
cated in the created abstraction.

The structural concept that corresponds to the merge variant is shown to the left of Figure 6.
The abstraction can be reused for a particular notation by specifying the type of the objects
to abstract (class Item), the type of the source objects that reference them (class Context

10

and reference target), and the aggregate type to create (Aggregate)2. In case of the
aggregation variant, the Aggregate class typically has also a child reference to the Item
class (see the left of Figure 8 as an example for a different abstraction operation). Finally,
the concept includes two hook methods: canAggregate to configure extra conditions that
the objects to be abstracted need to fulfil, and aggregate to compute possible attribute
values in the created aggregate.

The right of Figure 6 shows the working schema of the merge variant, where an aggregate
object is created in place of all items having a common source. The operation folds the
target references, copies the incoming and outgoing references from the original items
to the created aggregate, and deletes the abstracted items.

Item

Context
Aggregate

target*

:Item

:Item

:Item

…
:Context : Aggregate:Context

SourceParallel structural concept

targettarget

target

target

@hook canAggregate(Context): boolean

@hook aggregate(Set(Item))

…
… … …

…

…Context@hook aggregate(Set(Item))

Figure 6: Source parallel merge abstraction: concept (left) and behaviour (right).

Figure 7 shows an application of this abstraction to a DSML for computing systems. The
language contains two types of computing units (clusters and processors) characterized by
a clock rate, and which can be connected to storage units. We have depicted the binding
from the concept to the meta-model as tags. Thus, Cluster plays the role of Aggregate,
while ComputingUnit plays the role of both Item and Context. Moreover, the hook
method aggregate is configured to assign the introduced aggregate the minimum clock
rate of all aggregated computing units (this is done in OCL by collecting the clock rate
of each computing unit and picking the minimum) and the number of merged units. The
right of the figure shows two consecutive applications of this abstraction to a model, where
processors are graphically represented as chips, and clusters as blobs. The abstraction op-
eration automatically copies the referenced memory storages from the merged computing
units to the created cluster.

Target parallel. It abstracts a maximal set of objects that refer to the same target objects. Thus,
this abstraction is like the previous one, but considers target parallel objects instead of input
ones. The structural concept for its aggregation variant is shown to the left of Figure 8,
in which the only difference with respect to the concept of Figure 6 is the direction of the
target reference and that it requires a child reference to store the items in the created
aggregate. The right of the same figure shows the working scheme of this abstraction,
where three objects are aggregated as all refer to the same target objects (which in this case
is only one) and their references to the target object are substituted by a unique reference
from the created aggregate. Later, a particular tool may decide whether showing or not the
objects inside the aggregate.

2Please note that the class representing the type into which the objects will be abstracted is called Aggregate in our
concepts, regardless we use the variant merge or aggregation.

11

ProcessorCluster

Computing
Unit to

from
channel

clockRate: double

0..1

*

3.2

3.33

3.33

3.4 3.6

3.2

3.33

3.2 3.2

3.33
3.33

Item

Aggregate target

3.6

3.2

3.33 3.2

Storage
0..1
cache

2.5

1.2

2.5

1.2

2.5

1.2

size: double

Context

operation Cluster aggregate(s: Set(ComputingUnit)){
self.clockRate:= s->collect(cu|cu.clockRate)->min();
self.numProc := s->size();

}

numProc: int

3 3 3

Figure 7: Source parallel merge abstraction: binding (left) and application (right).

Item

ContextAggregate
target*

child

:Item

:Item

:Item

…
:Context :Aggregate

:Item

:Item

:Item

…
:Context

child

child

child

TargetParallel structural concept

target

target

target

target
@hook canAggregate(Context): boolean

*

@hook aggregate(Set(Item))

Figure 8: Target parallel aggregation abstraction: concept (left) and behaviour (right).

Figure 9 shows an application of this abstraction over UML 2.0 Statecharts, to encapsu-
late sets of states that reach the same state through the same trigger (i.e. it performs an
unflattening of statecharts). The left of the figure shows an excerpt of the UML State-
charts meta-model, simplified as it does not include Regions. The defined binding maps
both Item and Context in the concept to Vertex in the meta-model, as we want to detect
states connected to the same states. We have customized the abstraction by overriding the
hook operation canAggregate to include only target states with the same Trigger, and
aggregate to attach an appropriate Trigger to the created transition. Implementation-
wise, we have to use the hybrid version of the concept for this abstraction, as states are
not connected to states through a reference (as demanded by the structural concept) but
through an intermediate class Transition. The right of Figure 9 shows the in-place ap-
plication of this unflattening to a Statechart, which abstracts all states with a transition
triggered by “e” to S4.

Parallel. It abstracts a maximal set of objects with the same source and target elements. The
structural concept for this abstraction is shown to the left of Figure 10 in its variant
merge (i.e. the abstracted items are deleted and substituted by a single new item of type
Aggregate). The middle of the figure shows an application of this abstraction to the
meta-model of non-deterministic automata. The aim is simplifying automata by merging
sets of equivalent states, which are those that can reach, and can be reached from, the
same states through transitions with the same symbols. In such a case, we can merge the
equivalent states and obtain a simpler automaton which preserves behaviour, as the figure
illustrates to the right. For this purpose, we bind all classes in the concept to class State,
and override the canAggregateS and canAggregateT hook methods to check that tran-

12

NamedElement
name: String

Vertex

State

FinalState

PseudoState
kind: PseudoStateKind

Transition*
**

substates

Trigger
trigger*

Aggregate

S0

S1

S2

S3

S4

e

e

e

f

S0

S1

S2

S3

S4e

f

Context

Item

kind: TransitionKind

Figure 9: Target parallel aggregation abstraction: binding to Statecharts (left) and application (right).

sitions to/from the same states have the same symbol. As in the previous example, we
have used the hybrid version of the concept because states are inter-connected through the
intermediate class Transition, and not directly through a reference as demanded by the
structural concept.

State
name: String
initial: boolean
final: boolean

Item

Source
Context

target*

@hook canAggregateS(SourceContext): boolean
@hook canAggregateT(TargetContext): boolean

Target
Context

target *

Parallel merge structural concept

Aggregate

Context Context@hook aggregate(Set(Item))

State Transition
symbol: char

*

*

a

aname: String
initial: boolean
final: boolean

src

tar
S0

S1

S2

S3

b

b

a
S S

b

SourceContext

Item

TargetContext
S

a
S0 S12

bTargetContext
S3Aggregate

Figure 10: Parallel merge abstraction: concept (left), binding to automata (middle), and application (right).

Sequential. It abstracts a maximal sequence of linearly connected objects, and admits both vari-
ants merge and aggregation. The left of Figure 11 shows the structural concept for the
aggregation variant. The right of the figure illustrates the working schema of this abstrac-
tion: it creates an aggregate for a sequence of items, and copies the connections of the first
and last item of the sequence to the aggregate.

Item

Aggregate

child *

next *

:Item :Item

@hook aggregate(Sequence(Item))

… next

next

next

next

Sequential structural concept

@hook canAggregate(Item): boolean :Item… :Aggregate… … …next

next

next next

next next

child child child

next

:Item :Item :Item…next next

Figure 11: Sequential aggregation abstraction: concept (left) and behaviour (right).

Figure 12 shows to the left a binding of the concept to the BPMN 2.0 meta-model, where
we have mapped Item to FlowElement and Aggregate to SubProcess. Reference
child in the concept could be directly mapped to reference flowElements, however
we use the hybrid version of the concept because we have to navigate between FlowNodes

13

through SequenceFlows, and not directly with a reference. In this case, we have cus-
tomized the canAggregate hook method to forbid having gateways as first or last element
in the abstracted sequence, and the aggregate method to create the start and end events
of the subprocess. The right of the same figure shows an example application.

A0

A0

FlowNode

Sequence
Flow

targetRef

sourceRef

**

Activity Gateway

SubProcess

FlowElement

FlowElem
Container

*

Item

Aggregate

flowElements

0

A1 A2

A4

A5

A1 A2

A4

A5+ +

++
A3

A3

Figure 12: Sequential aggregation abstraction: binding to BPMN (left) and application (right).

Block. It abstracts a connected set of elements between two given objects, and supports both
merge and aggregation variants. Moreover, it is also possible to configure whether the
two objects delimiting the block should be abstracted or not. As a difference from the
previous cases, here the location where the abstraction will be applied is not detected
automatically, but the two objects delimiting the block must be given as parameters to the
abstraction operation. Figure 13 shows to the left the hybrid concept for this abstraction.
InitialContext and FinalContext correspond to the type of the objects delimiting the
block (the concrete objects will be passed as parameters), and Item corresponds to the
type of the abstracted elements. As the concept is hybrid, the binding needs to provide
operations getNext to obtain all adjacent items of a given one, and addChild to add the
items in the block to the aggregate. The right of Figure 13 shows the working scheme for
the aggregation variant of this abstraction and including the delimiters of the block in the
aggregate.

Item

Initial
Context

Aggregate

:Initial
Context

:Item

:Item
…

Block Abstraction Hybrid concept

@hook canAggregate(Set(Item)): boolean
getNext() : Set(Item)

@hook aggregate(Set(Item))
addChild(Item)

Final
Context

:Final
Context

:Item

:Item
… …

:Initial
Context

:Item

:Item
… :Final

Context

:Item

:Item
… …

:Aggregate

Context
:Item

Context
:Item

Figure 13: Block aggregation abstraction: hybrid concept (left) and working scheme (right).

Figure 14 shows a binding to BPMN and an example application. For the case of BPMN,
both block delimiters need to be gateways, typically of complementary type. Role Item

is bound to FlowElement so that both FlowNodes and SequenceFlows are aggregated.
While this abstraction needs to be provided with the initial and final context objects, we
have designed a specialization of this abstraction for BPMN which automatically detects
abstraction opportunities (see next subsection).

14

FlowNode

Sequence
Flow

targetRef

sourceRef

**

Activity Gateway

SubProcess

FlowElement

FlowElem
Container

*

Item

Aggregate

flowElements

InitialContext

FinalContext

A0

A1 A2

A4

A5

A0

A1 A2

A4

A5� �

A3

A3

� �

Figure 14: Block aggregation abstraction: binding to BPMN (left) and example (right).

Similarity. It abstracts a maximal set of objects considered similar by a custom-defined oper-
ation. The left of Figure 15 shows the structural concept for the aggregation variant of
this abstraction. The right of the figure shows an application example to BPMN 2.0 mod-
els. As in the abstraction heuristic presented in [52], we consider similar those tasks that
produce or consume the same sets of Data Objects and use the same resources (in the
model example, if they are performed by the same HumanPerformer). Thus, we config-
ure this abstraction by binding class Item in the concept to FlowElement, Aggregate to
SubProcess, and implementing the isSimilarTo hook method. Please note that we do
not need to bind BPMN Data Objects, but the isSimilarTo operation, when imple-
mented for BPMN, is in charge of comparing the data objects attached to FlowElements.

F
ac

ili
ta

to
r

Organise
Meeting

Perform
Meeting

Evaluate
Report

Report

Item
@hook isSimilarTo(Item): boolean

Similarity structural concept

F
ac

ili
ta

to
r

Organise
Meeting

Generate
ReportAggregate

child *

@hook isSimilarTo(Item): boolean

@hook aggregate(Set(Item))

Figure 15: Similarity aggregation abstraction: concept (left) and application to BPMN (right).

Loop removal. It removes loops between two types of objects. The associated concept is shown
in Figure 16(a). We consider two variants: the first one removes one of the references to
break the loop, whereas the second one removes the object with type Item and its refer-
ences. The second variant is illustrated in Figure 16(b). Figure 16(c) shows an application
of this abstraction that simplifies Petri nets, while preserving their behaviour, according to
the elimination of self-loop places reduction rule [45]. Thus, a place is removed if it has
at least one token and has no further input or output arcs, which is checked in the imple-
mentation of the hook method canRemove. Figure 16(d) shows an application to YAWL
nets [58] that eliminates self-loop tasks. A different binding into YAWL would enable the
elimination of self-loop conditions as well [58].

15

Context

@hook canRemove(): boolean

Item
:Item

:Context :Context
target * target *

Loop removal struct. concept

(a) (b) (c)

p

t

p

… … … …

 (c) (d)

Figure 16: Loop removal abstraction: concept (a), behaviour (b), and applications to Petri nets (c) and YAWL nets (d).

4.2. Domain-specific abstractions

Oftentimes, abstractions are specifically designed for a particular domain, such as Petri
nets [45] or process models [52, 58]. Their definition over concepts makes them meta-model
independent, and therefore reusable for other languages with similar semantics. If an abstraction
for a particular domain is especially complex, it can still be built by reusing and customizing
horizontal abstractions (like the ones in our catalogue). However, in such cases, we can benefit
from specializing it as a domain-specific abstraction over a concept that reflects the particularities
of the domain and can be bound to languages with close semantics with minimal configuration
effort. In the following, we briefly describe some abstractions for different domains.

Petri nets. The left of Figure 17 shows on top a hybrid concept named ProcessHolder capturing
the essential elements of Petri net-like languages. The Holder role is played by place-like
entities, while Processes are the active elements, played by transition-like elements. This
concept allows querying the model through the operations tokens, inputs and outputs,
which hide the specific structure used by different boundable meta-models. The figure
shows in addition a typical organization of concepts, where concepts needed for specific
operations, like abstraction and simulation, extend a base concept. While the concept for
simulation needs the implementation of an additional mutator operation addToken, the
one for abstractions in the bottom left can be configured through a number of hooks to
perform additional actions when deleting a holder or a process, when aggregating two
holders, or when merging their inputs.

Holder Process

tokens():int inputs():Set(Holder)
outputs():Set(Holder)

ProcessHolder concept

Holder Process

Abstraction ProcessHolder
concept

Holder

Simulation
ProcessHolder
concept

@hook remove()
@hook canAggregate(s: Set(Holder)): boolean
@hook aggregate(s: Set(Holder))
@hook mergeInputs (h: Holder)

@hook remove() addToken(n: int)

:Process :Process�

:Holder
out out

in

:Process :Process�

:Holder
out out

in
:Process

:Holder

:Process :Process�

in in

in

out

:Process :Process�

in in

Figure 17: Concepts for Petri net-like languages (left). Fusion of serial places abstraction (right).

As an example, the right of the same figure shows the working scheme of the abstraction
operation Fusion of Serial Places (FSP), which is defined over the concept Abstraction
ProcessHolder. This abstraction merges two holders in sequence. The abstraction is taken
from the standard catalogue of Petri-net reduction rules, which preserve liveness, safeness

16

and boundedness [45]. The rationale is to obtain a simpler model through abstraction,
which becomes more efficient to analyse, as the resulting state space is smaller.

As we have defined the abstraction operation over a concept, we can apply the operation to
languages with Petri net-like semantics, to which we can bind the Abstraction ProcessH-
older concept. For instance, Figure 18 shows the binding of the concept to a DSML for
factories. This DSML is made of three types of machines: generators, assemblers and ter-
minators. Generators model processes that add parts in the factory, terminators take parts
out of the factory and assemblers transform parts. Parts are transferred between machines
through conveyors. The binding maps Holder and Process in the concept to the classes
Conveyor and Machine in the meta-model, respectively, so that the abstraction will be
used to fusion serial conveyors. The binding needs to implement the required query opera-
tions tokens, inputs and outputs (we only show the implementation of the first one for
brevity). In addition, the binding implements two hook operations: mergeInputs, which
redirects the references from input machines to the merged conveyor, and aggregate,
which calculates the number of parts to be placed in the merged conveyor. The right of
the figure shows the application of the FSP abstraction to a factory model, leading to the
merging of two adjacent conveyors.

�
������ → ��	
����

���
���→ ��
��	�

Process

inputs():Set(Holder)
outputs():Set(Holder)
@hook remove()

Holder

tokens(): int
@hook remove()
@hook canAggregate(s: Set(Holder)): boolean
@hook aggregate(s: Set(Holder))
@hook mergeInputs (h: Holder)

Abstraction ProcessHolder concept

operation Conveyor tokens() {
return self.parts.size();

}
operation Conveyor
mergeInputs(h: Conveyor) {
for (a in Machine.all)

if (a.outs.includes(h)) {
a.outs.remove(h);
a.outs.add(self);

Factories DSML

Machine

Part

Conveyor

Generator Assembler

�	��

����
�

�

� �����

Terminator

a.outs.add(self);
}

}
operation Conveyor
aggregate(s: Set(Conveyor)) {
for (h in s)
self.parts.addAll(h.parts);

}

���� �������� ����

����

Figure 18: Fusion of serial places abstraction: binding to a DSML for factories (left) and application (right).

Workflows. Another domain for which we have defined specific abstraction operations over
suitable concepts is process modelling. For example, Figure 2 showed the concept Work-
flow for process modelling languages, which gathers the requirements for the block ab-
straction operation. This abstraction aggregates into a subprocess a block delimited by two
complementary gateways. An example application of this abstraction to BPMN is shown
in Figure 24. This abstraction is a specialization of the block horizontal abstraction for
workflow languages. Building this specialization has two advantages: first, it is easier to
identify the elements to bind for languages of the workflow domain, and second, it can
use the workflow semantics to detect where to apply the abstraction automatically (using
the horizontal abstraction directly would require giving the initial and final context ob-
jects delimiting the block as parameters). Other abstractions we have built (which we took
from [53]) include sequential merge, loop abstraction and elimination of dead-end paths.

Domain-specific process modelling. Another way to define abstractions for particular domains
is by the use of domain-specific meta-modelling, as explained in Section 3.4. In this ap-

17

proach, a domain-specific meta-modelling language is used to define a family of languages
for a certain domain (see Figure 5). The abstractions defined over types of the domain-
specific meta-modelling language are applicable to any DSML built with it.

Up to now, we have defined several abstractions for domain-specific process modelling
languages. For example, Figure 19 shows the working schema of a view abstraction that
transforms process models into Petri-nets. The upper-left of the figure corresponds to
a domain-specific meta-modelling language for process modelling (it is a refinement of
the one shown in Figure 5). Below, it is instantiated to define a modelling language for
software processes. The bottom-left shows a particular software process model. The view
abstraction is defined as a model-to-model transformation, using the types of the meta-
modelling language. Our multi-level framework is able to deal with indirect types [8],
so that the transformation becomes applicable to the bottom-most model. Hence, the rule
Task2Place defined over Task is applicable to objects a, d and c.

domain-specific meta-modelling
language for process modelling

Artifact*

*
out

in

*

Task

performs

Performer

Gateway

Seq Par

src

tar
*
*

Design: Task

software process modelling

Analysis: Task Coding: Task

UnitTest:
Artifact

A2D: Seq D2C: Seq
src tar src tar

rule Task2Place
transform t : Task
to p : Place

{
...

}
....

defined on

Design: TaskAnalysis: Task Coding: Task

Programmer:
Performer

Designer:
Performer

Analyst:
Performer

Code:
Artifact

d: Designa: Analysis

john: Analyst ann: Designer

c: Coding

sue: Programmer

A2D: Seq D2C: Seq
src tarsrc tar

a software process

a,
Analysis

d,
Design

c,
Coding

Figure 19: A view abstraction for domain-specific process modelling.

5. Configuring the abstraction operations through annotation models

The abstractions presented so far include hook methods, like isSimilarTo or canAggregate,
to customise the object similarity criteria used by the abstractions. If the similarity criteria are
simple, it is straightforward to implement the hook methods. However, some abstractions may
rely on complex clustering techniques – like those of Formal Concept Analysis [5] (FCA), or
k-means [40] – to estimate the similarity of objects. All these techniques have in common that
they compare objects according to a subset of their attributes, and in some cases, they partition
the attribute values in equivalence classes. As a result of this comparison, objects which are more
similar to each other are classified in the same cluster. Hence, the challenges are: (i) how to build
clustering algorithms reusable for different meta-models, (ii) how to configure the objects to be
compared and the attributes used in the comparison, and (iii) how to use the resulting clusters of
objects as similarity criteria in our abstraction operations.

A scheme of our solution is shown in Figure 20. As before, the abstraction operation is
attached a concept, to be bound to a particular meta-model. In addition, the operation can use

18

generic implementations of clustering algorithms through the isSimilarTo and canAggregate
hooks. The clustering algorithms are not tied to a domain meta-model, but they are typed on a
predefined annotation meta-model. The configuration of the clustering algorithm for a domain
meta-model is done through an annotation model that identifies the meta-model classes and at-
tributes involved in the comparison, as well as the possible equivalence classes for the attributes.
The clustering algorithm remains generic as it is typed on the annotation meta-model, and only
uses the configuration information provided by the annotation model.

annotation
meta-model

instance of

typed on

abstraction
operation

concept
typed on

binding

clustering
algorithm

uses

(hook)
isSimilarTo

annotation
model

Domain
Meta-model

annotates Domain
Meta-model

domain
meta-model

clustering algorithm configuration

Figure 20: Scheme of the configuration of generic abstraction operations through annotation models.

Figure 21 shows the meta-model of our annotation models. It allows defining the type of the
objects to be clustered by the algorithm, the features used for their comparison, and partitions for
attribute values by means of equivalence classes. Classes Object, Relation and Property are
pointers to the objects, references and fields to be used by the clustering algorithm. There should
be at least one Object with its attribute classifiable set to true, which identifies the element
type to cluster, taking into account the annotated features. The meta-model also supports the
annotation of complex navigation expressions, e.g. involving the traversal of several relations, by
using the class IndirectRelation. Finally, the children of class Equivalence allow defining
equivalence classes for attribute values. For attributes of type real, we can indicate the range of
values for the equivalence class (attributes min and max to specify a bounded range, or noMin
and noMax if it is unbounded).

Object Feature

Equivalence

RealEquiv StringEquiv
�

min: double

ref: Node
classifiable: boolean

name: String

props

*

*

eq
Property

ref: Field[0..1]

Relation

{ordered}

Indirect Relation

{ordered}

target0..1

min: double
max: double
noMin: boolean
noMax: boolean

Figure 21: Annotation meta-model for clustering.

Next, we describe two generic clustering algorithms that we have defined over this meta-
19

model, and show some examples of abstraction operations that use them.

k-means based similarity. The Machine Learning community has proposed many clustering
techniques. In particular, the k-means technique [40] classifies a set of objects in k clusters.
The objects are encoded as numerical vectors describing their features, and then they are
grouped according to their distance to the mean of each cluster. In this way, the algorithm
minimizes the expression

argmin
k∑

i=1

∑
x j∈S i

∥x j − µi∥2

which is the distance of each object x j to the mean value µi of its cluster S i. We have
implemented this algorithm using the types of our annotation meta-model (i.e. object,
relation, etc.), so that it can be reused for different abstractions and modelling languages,
as we illustrate below.

Some works reported in the literature use k-means to find sets of similar objects, which
are then abstracted. For example, [52] uses this algorithm to cluster activities in process
models based on their input/output data objects and on the resources they use. The al-
gorithm needs a fixed value for k, and the authors suggest values from 5 to 7 in process
modelling [52].

To implement this abstraction for BPMN using our approach, we first need to annotate its
meta-model to indicate the elements used to measure the similarity of activities. The an-
notations will be used by our k-means algorithm to automatically build clusters of similar
activities. Then, we can use a similarity horizontal abstraction to aggregate the activities
in each cluster. The advantage is that we do not need to hand-code the algorithm to iden-
tify the sets of similar activities, but the configuration is an instantiation of the annotation
meta-model.

Figure 22 shows the annotation model used to configure the similarity criteria for this ab-
straction. The annotation model contains an instance of Object which points to Activity
in the BPMN meta-model, as this is the element to compare and classify. Two similar-
ity criteria are defined for activities: used resources and input/output data objects. The
first one corresponds to the relation resources stemming from Activity, therefore it
is enough to annotate this relation through an instance of Relation, as shown in the fig-
ure. For the second criterion, we need to navigate from Activity objects to the data
objects they access, which is done by the expression attached to the IndirectRelation
annotation3.

Additionally, to use the similarity horizontal abstraction, we need to bind the BPMN meta-
model to the concept of Figure 15. In this case, Activity plays the role of Item and
SubProcess will be used as Aggregate. The abstraction would use the result of the
k-means algorithm to aggregate the similar activities.

FCA/RCA-based similarity. Formal Concept Analysis (FCA) [5] is a clustering technique based
on the calculation of so-called FCA concepts4, which are clusters of objects sharing max-
imal sets of properties. As a difference with k-means, the number of clusters does not

3The expression is simplified, as the navigation goes through intermediate InputOutputSpecification objects.
4Coincidentally, FCA concepts have the same name as generic concepts, but both terms are unrelated.

20

annotation model

BPMN meta

FlowNode

FlowElement

TaskContext:
Object

DataObjects:
IndirectRelation

Activity

Resources:
Relation

name:

Performer

resources

ResourceRole

����

self.dinpAss->collect(d | d.targetRef)->union(
self.doutAss->collect(d | d.targetRef))

classifiable=true

BPMN meta-model (simplified)

FlowNode SubProcess DataAssociation

FlowElement FlowElemContainer
flowElements

*

���������

	
��

Activity

: String

Performer

SubProcess

DataInput
Association

DataAssociation

ItemAwareElement

Data
Object

so
ur

ce
R

ef

ta
rg

et
R

ef

resources *

DataOutput
Association

ResourceRole

dinpAss

doutAss

*
*

Data
Input

Data
Output

Figure 22: Configuring k-means for BPMN through an annotation model, and binding for similarity abstraction.

need to be fixed a priori. Moreover, FCA requires the definition of equivalence classes
for all attributes involved in the comparison, which is called data scaling [27]. Some sim-
ple comparison criteria can also be supplied for references, which by default is reference
equality.

Relational Concept Analysis (RCA) [27] extends FCA with a richer classification for ob-
jects with references, as in this case, the algorithm builds additional concept lattices for
the target of references (i.e. it classifies the target objects in clusters as well).

We have implemented generic algorithms for FCA and RCA, using the types from our
annotation meta-model. As an application example, Figure 23 shows the meta-model of
a DSML for computing systems (upper right), which we already used for the source par-
allel abstraction. The left of the figure shows the annotation model we need to provide to
our RCA algorithm to classify computing units according to their clock rate and the size
of their storage cache. The classifiable object in the meta-model is ComputingUnit, as
we want to classify both processors and clusters. Two properties are defined as compar-
ison criteria: the attribute clockRate, for which three equivalence classes are provided
(low, medium and high), and the attribute size of the computing unit’s storage, accessed
through the reference cache, with two possible categories (small and big).

We can use the results of the clustering algorithm in different abstraction operations.
For instance, in order to abstract similar computing units into a single Cluster object,
we can bind the DSML to the concept for the similarity merge abstraction as follows:
ComputingUnit is bound to Item, and Cluster to Aggregate. The bottom-right of
Figure 23 shows the result of applying this abstraction to the same model used in Figure 7.

6. Tool Support

The approach and abstractions presented in this paper have been implemented and validated
using MetaDepth5, a meta-modelling framework which supports multi-level meta-modelling and
textual modelling [7]. It is integrated with the Epsilon family of languages6, which permits

5The tool and the abstractions are available for download at http://astreo.ii.uam.es/∼jlara/metaDepth/
6http://eclipse.org/gmt/epsilon/

21

ClusterProcessor

Computing
Unit to

from channel

clockRate: double

0..1

*
Item

Aggregate
Storage

0..1cache

annotation model

UnitContext:
Object

cache: Relation

ClockRate: Property

Low:
RealEquiv

Medium:
RealEquiv

High:
RealEquiv

min=0
max=2.5

min=2.5
max=3.35

min=3.35
noMax=true

classifiable=true

DSML meta-model

numProc: intsize: double

StorageContex
t: Object

Size: Property

Small:
RealEquiv

Big:
RealEquiv

min=0
max=1.5

min=1.5
noMax=true

3.2

3.33

3.33

3.4 3.6

3.2

3.33

2.5

1.2

3.2

2.5

3.4

1.2

classifiable=false

numProc: int

5 2

Figure 23: Configuring RCA for a DSML through an annotation model, binding for similarity abstraction and application.

defining in-place model manipulations, model-to-model transformations and code generators.
All these operations can be made generic by their definition over (structural or hybrid) concepts
or mixins. Moreover, we have extended MetaDepth’s genericity support with the possibility of
defining hook methods with default implementations in concepts.

6.1. Concept-based reusability

Concepts, mixins and bindings are specified textually in MetaDepth. As an example, List-
ing 1 shows the definition of the structural concept shown in Figure 2. The definition of a concept
is similar to a meta-model definition, but its elements are considered variables and their definition
is preceded by “&”. The concept has a list of parameters (lines 2–3) in order to ease the binding
to meta-models, as we will see later.

1 concept Workflow
2 (&M, &WNode, &WEdge, &Aggregate,
3 &Gateway, &child, &src, &tar) {
4 Model &M {
5 abstract Node &WNode {}
6 Node &WEdge {
7 &src : &WNode;
8 &tar : &WNode;
9 }

10 Node &Aggregate : &WNode {
11 &child : &WNode[∗];
12 }
13 Node &Gateway : &WNode {}
14 }
15 }

Listing 1: Structural concept.

1 operation blockAbstraction() : Boolean {
2 var comp : &WNode = null;
3 for (gw in &Gateway.allInstances())
4 if (gw.isSplit()) {
5 comp := getJoin(gw);
6 if (comp<>null) {
7 var sq : Sequence(&WNode);
8 sq.addAll(getAllInBetween(gw, comp));
9 createAggregateFor(sq, gw, comp);

10 return true;
11 }
12 }
13 return false;
14 }
15 operation &Gateway isSplit() : Boolean{...}
16 ...

Listing 2: Block abstraction operation.

22

Once the concept is defined, we can build operations that use the variable types defined
in the concept. In MetaDepth, the abstraction operations that modify the models in-place are
defined using the Epsilon Object Language (EOL) [34], whereas the view-generating abstraction
operations are defined with the Epsilon Transformation Language (ETL) [35]. Listing 2 shows
an excerpt of the block abstraction operation using EOL (most auxiliary operations and methods
are not shown), which uses the types of the Workflow concept of Listing 1.

To reuse the generic operation with a given modelling language, we need to provide a binding
from the concept to the meta-model of the language. Listing 3 shows the binding of the concept
in Listing 1 to the meta-model of BPMN2.0. In this case, the SubProcess type of BPMN acts
as aggregate (fourth parameter of the binding, corresponding to the &Aggregate variable of the
concept).
1 bind Workflow (BPMN, BPMN::FlowNode, BPMN::SequenceFlow,
2 BPMN::SubProcess, BPMN::Gateway, BPMN::FlowElementsContainer::flowElements,
3 BPMN::SequenceFlow::sourceRef, BPMN::SequenceFlow::targetRef)

Listing 3: Binding to meta-model.

The users of a generic abstraction only have to define the binding from the concept to their
modelling languages. The binding in Listing 3 allows reusing the block abstraction operation,
which consists of several hundred lines of EOL code. Thus, the user has to specify fewer lines
of code (3) to benefit from a proven abstraction operation. Actually, the real definition of our
Workflow concept is slightly larger and has associated further domain-specific abstractions, hence
the reuse opportunities are larger. Moreover, the user of the abstraction is not confronted with
understanding the code being reused and a subsequent manual adaptation of the operation for a
particular meta-model, which is error-prone. Instead, he only deals with the operation “interface”
(i.e. the concept), and so the different elements in the concept become similar to roles in design
patterns.

6.2. Multi-level based reusability

MetaDepth supports modelling using an arbitrary number of meta-levels [6]. The number of
levels in which an element can be instantiated is controlled by its potency [2]. This is a natural
number attached to classes, edges and fields, which gets automatically decreased at each lower
meta-level. When it reaches zero, it is not possible to instantiate the element in lower meta-levels.
The interested reader can consult [6, 8] for further details.

We can use MetaDepth’s multi-level capabilities to define domain-specific meta-modelling
languages and abstractions for them. As an example, Listing 4 shows an excerpt of the definition
of the domain-specific meta-modelling language to define process modelling languages, similar
to the one shown in Figure 19. Line 1 declares the meta-modelling language with potency 2
(indicated after the symbol ‘@’), which means that it can be instantiated at two meta-levels.
Lines 2–7 declare meta-class Task. Since it does not specify a potency on its own, it takes the
potency of the enclosing model (i.e. 2). It declares an attribute name with potency 1, which can
receive a value at the next meta-level, a boolean flag initial with potency 2 (taken from Task)
which can receive a value two meta-levels below, and two references to input and output artefacts.
Similarly, classes Performer and Artifact are declared in lines 8–11 and 12, respectively.
Finally, an abstract class Gateway is defined in lines 14–17 with references to source and target
tasks, together with two subclasses Seq and Par in lines 18 and 19.

23

1 Model ProcessModel@2 {
2 Node Task {
3 name@1 : String[0..1];
4 initial : boolean;
5 ins : Artifact[∗];
6 outs : Artifact[∗];
7 }
8 Node Performer {
9 name : String;

10 performs : Task[∗];
11 }
12 Node Artifact {}
13

14 abstract Node Gateway {
15 src : Task[∗];
16 tar : Task[∗];
17 }
18 Node Seq : Gateway {}
19 Node Par : Gateway {}
20 }

Listing 4: Process meta-modelling language.

1 ProcessModel SoftwareProcess {
2 Task Analysis { name = ”requirements, analysis”; }
3 Task Design { name = ”high−leve design, low−level design”; }
4 Task Coding { name = ”coding, unit testing”; }
5

6 Performer Analyst { perf : Analysis{performs}; }
7 Performer Designer { perf : Design{performs}; }
8 Performer Programmer { perf : Coding{performs}; }
9

10 Seq A2D {
11 from: Analysis{src};
12 to : Design{tar};
13 }
14 Seq D2C {
15 from: Design{src};
16 to : Coding{tar};
17 }
18 }

Listing 5: Software process modelling language.

Listing 5 shows a simple software process modelling language, built using the previous
domain-specific meta-modelling language (i.e. it is an instance of the meta-model in Listing 4).
The language defines three tasks types (Analysis, Design and Coding) and three types of
Performer (Analyst, Designer and Programmer). Each task type can assign a value to name

because this attribute was defined with potency 1, and each performer declares the type of task
he can get involved in by explicitly instantiating the performs reference. Finally, the instances
of Seq in lines 10 and 14 allow navigating from Analysis to Design tasks, and from Design

to Coding tasks.
We can use this language to define software process models, like the one shown in Listing 6.

In line 2, we can assign a value to initial, as this attribute was given potency 2 in Listing 4.

1 SoftwareProcess aProcess {
2 Analysis a { initial = true; }
3 Design d {}
4 Coding c { }
5

6 Analyst john{ name = ”John”; perf = a; }
7 Designer ann{ name = ”Ann”; perf = d; }
8 Programmer sue{ name = ”Sue”; perf = c; }
9

10 A2D a2d { from = a; to = d; }
11 D2C d2c { from = d; to = c; }
12 }

Listing 6: Software process model.

1 @lazy
2 rule Task2Place
3 transform task : Source!Task
4 to place : Target!Place
5 {
6 place.name := task.name;
7 if (task.initial) place.tokens := 1;
8 }
9

10 rule Gateway2Transition
11 transform gateway : Source!Gateway
12 to transition : Target!Transition
13 {
14 for (ref in gateway.references(”tar”))
15 for (task in gateway.value(ref))
16 new Target!ArcTP(transition, task.equivalent());
17

18 for (ref in gateway.references(”src”))
19 for (task in gateway.value(ref))
20 new Target!ArcPT(task.equivalent(), transition);
21 }

Listing 7: View abstraction for business process models.

The abstraction operations built over a domain-specific meta-modelling language are appli-
cable to the instances of any modelling language built with it. As an example, Listing 7 shows a
model-to-model transformation that creates a Petri net from a process model (i.e. a view abstrac-
tion of the process model). The transformation is implemented using the Epsilon Transformation
Language (ETL) [35], which is integrated in MetaDepth. The transformation uses the types of

24

the domain-specific meta-modelling language in Listing 4, and is applicable to models two meta-
levels below, like the one in Listing 6. Rule Gateway2Transition transforms any gateway into
a transition. If we apply this rule to the model in Listing 6, two transitions would be created:
one corresponding to a2d and another for d2c, as both are indirect instances of Gateway (they
are instances of A2D and D2C respectively, which are instances of Seq, and this is a subtype of
Gateway). The rule iterates on all tasks which are output to the gateway (lines 14–15), creating
a new Petri net arc which connects the created transition to the place created from the output task
(line 16). This place is actually obtained through the standard ETL method equivalent. An
invocation to this method implicitly executes the lazy rule Task2Place if the task has not been
transformed yet. Rule Task2Place creates a place for each task, and adds one token to the place
if the task is initial.

Both concepts and multi-level modelling can be used to build reusable operations. Both
techniques share similarities, as the role of the binding in concept-based reuse is the same played
by the typing in multi-level-based reuse. Moreover, a concept could be used with similar pur-
poses to a domain-specific meta-modelling language, to define families of domain-specific lan-
guages. However, concepts (and their associated operations) can be developed independently of
the meta-models to be bound, even after these meta-models exist, whereas domain-specific meta-
modelling languages need to be defined before any meta-model of the family can be built. While
a meta-model (like the one in Listing 5) can be bound to many concepts, it is typed by a single
meta-modelling language (in this case, the one in Listing 4). It is up to future work to devise
means to make multi-level modelling more flexible, allowing multiple, a posteriori typings.

6.3. Visualization

Figure 24: Example of a BPMN model, before and after applying an abstraction.

So far we have considered abstractions at the abstract syntax level. However, modelling
languages have a concrete syntax as well, typically graphical. When an abstraction is applied,
the model visualization should be updated accordingly. As a proof of concept, we have built
a visualization engine for MetaDepth models with support for grouping together elements into
aggregate objects. The engine uses a meta-model to define graphical concrete syntaxes which
includes the notion of grouping. Hence, in order to define the visualization of a language, a sim-
ple mapping from its meta-model to our graphical syntax meta-model must be given. Moreover,
the engine uses a default visualization for the elements added by mixins, and which therefore do

25

not belong to the bound meta-models. Then, our engine interprets concrete syntax models and
renders their visualization with the jGraph library. Figure 24 shows the visualization of a BPMN
model, before and after applying the block abstraction.

7. Assessment: generality and reusability

This section assesses the generality of our approach by showing how it can be used to define
existing well-known abstraction catalogues for model-based systems, business process models
and Petri nets.

In [50], the author presents a catalogue of abstraction patterns for software architecture
models. Some of these abstractions are specific to component systems and can be defined in
our framework as domain-specific abstractions over a suitable concept for component systems,
whereas others can be built using our horizontal abstractions. For example, the “port group”
pattern – which merges all ports of a component into a single one – is our source parallel ab-
straction, while the “black box” pattern – which groups a set of connected components – is our
block abstraction. The author also proposes some abstraction patterns for behavioural modelling
languages, like state machines, which we can express using our horizontal abstractions. For in-
stance, the “group transition” pattern – which merges states having transitions with the same
trigger and leading to a common state – can be expressed with our target parallel abstraction,
as Figure 9 shows for the aggregation variant. Interestingly, we propose the block horizontal
abstraction to aggregate both state machines and activity diagrams. This confirms that it can
be seen as a horizontal abstraction, applicable to several modelling languages. While the goal
of [50] is to present abstraction patterns for specific modelling notations, ours is to provide a
practical means to define reusable abstractions across different languages. Table 1 summarizes
the proposed abstractions and how they can be represented using our catalogue. Most of them
can be described using horizontal abstractions. Some others (like platform layering and complex
summary) are too abstract and require the guidance of an expert user, e.g., to decide the layers to
be included in an application, how they should communicate and which components to include
in each one of them. This shows the generality of our horizontal abstractions.

Table 1: Software modelling abstractions proposed in [50].

Name Domain Description Abstraction in
our catalogue

Port group Software arch. merges all ports of a component into a single port Source parallel
Black box Software arch. groups a set of connected components Block
Black line Software arch. abstracts a set of components as an edge Sequential
Cable pattern Software arch. abstracts a set of edges into a single edge Parallel
Port group Software arch. abstracts a set of ports into a single port Source parallel
Platform layering Software arch. separates an application in different layers –
Summary message Sequence diagrams merges several messages into a single message Domain-specific
Complex summary Sequence diagrams merges several life lines into a single life line –
Summary state State machines merges a block of states into a single state Block
Group transition State machines merges states having transitions with the same trigger and

leading to a common state
Target parallel

Summary activity Activity diagrams merges a block of activities into a single activity Block

Most abstraction techniques are designed for a particular notation. For example, there are
techniques tailored for abstracting process models in BPMN [52]. A catalogue is presented
in [53], which includes abstractions for event-driven process chains, like sequential, block, loop

26

and dead-end abstractions. Table 2 shows a summary of such abstractions. We can define some
of them using our horizontal abstractions, whereas others were built using a specific concept for
workflow languages. The fourth column of the table shows some bindings that we have made to
concrete modelling languages, showing the reusability of our approach.

Table 2: Domain-specific abstractions for Business Process Models ([52, 53]).

Name Description Abstraction in our
catalogue

Binding

Sequential merges sequential elements between two blocks Sequential BPMN
Workflow sequence Intalio

UML activity diagrams
Block abstracts elements between split/join connectors Block BPMN

Workflow block Intalio
UML activity diagrams

Loop abstracts loops between two gateways Workflow loop BPMN
Intalio
UML activity diagrams

Dead-end removes dead paths stemming from a gateway Workflow remove path BPMN
Intalio
UML activity diagrams

Semantic abstraction abstraction based on similarity Similarity + k-means BPMN
Intalio
UML activity diagrams

Abstractions are also heavily used in verification to obtain simpler models that can be anal-
ysed more efficiently. For example, Table 3 shows the 6 reduction rules for Petri nets presented
in [45], as well as how to define them using our framework in a generic, reusable way. This
is an advantage of our approach, as in all these specific domains, abstraction implementations
are frequently tied to the specificities of a language, and are therefore hardly reusable even for
similar notations in the same domain.

Table 3: Domain-specific abstractions for Petri nets ([45]).

Name Description Abstraction in our
catalogue

Binding

Fusion Series Places merges two places and an intermediate transition Sequential Petri nets
Petri net FSP DSLs

Fusion Series Transitions merges two transitions and an intermediate place Sequential Petri nets
Petri net FST DSLs

Fusion Parallel Places merges parallel places between two transitions Parallel Petri nets
Petri net FPP DSLs

Fusion Parallel Transitions merges parallel transitions between two places Parallel Petri nets
Petri net FPT DSLs

Elim. of Self-Loop Places eliminates places with loops through a transition Loop removal Petri nets
Petri net ELP DSLs

Elim. of Self-Loop Transitions eliminates transitions with loops through a place Loop removal Petri nets
Petri net ELT DSLs

8. Related work

Modelling languages provide abstractions, or primitives, that capture the essential charac-
teristics of systems, dismissing the unimportant parts for the purpose of the modeller. Since

27

models can be very complex, abstractions become important as a means to understand, modify
and manage this complexity. Abstraction has been recognized as one of the key techniques for the
model-based engineering of software and systems in the field of multi-paradigm modelling [44],
and is pervasive in software engineering [29]. However, to the best of our knowledge, there are
no works aimed at systematizing and providing a practical framework to reuse abstractions across
modelling languages, but there are only concrete proposals for specific modelling notations and
tools.

For instance, many modelling languages (e.g. Statecharts [22], BPMN [46] or UML com-
ponent diagrams [47]) have particular hierarchical primitives that enable element aggregation,
which can be used for model abstraction. The foundations of such constructs can be traced back
to Harel’s higraphs [23], which enrich “flat” hyper graphs with depth (hierarchical primitives)
and cartesian products. Higraphs can be used as a basis to build notations like hierarchical entity
relationship diagrams or Statecharts [22]. There is also the possibility of “zooming out” a cer-
tain node, supressing low-level details. While this operation can be seen as a tool visualization
feature, in this work we concentrate on abstraction operations having an impact on the model
structure.

In most cases, abstractions have been proposed for specific notations or tools, like BPMN [52],
Statecharts [54] or Petri nets [45]. If the modelling language contains hierarchical primitives (like
BPMN or Statecharts), then abstractions may introduce aggregation elements (e.g. organizing
activities in subprocesses). If the language lacks such primitives (like Petri nets), abstractions
are normally restricted to merge or delete (filter) elements. Abstractions have been proposed not
only for behavioural notations – like the previous ones – but for structural notations as well, like
Entity Relationship Diagrams [43, 51], components [50] or class diagrams [11]. In some cases,
like in [51], the language (Entity Relationships) is increased with hierarchical constructs that
aggregate related elements. Language extensions are considered by our mixins. In any case, the
proposed abstractions in the literature are normally tied to the specificities of a language or tool,
and cannot be reused for other similar languages.

Some abstractions can be considered model refactorings [13], as they preserve the model
semantics. Many refactorings for different modelling languages have been proposed, some of
which are abstractions. For example, in [54], the authors identify the “fold outgoing transition”,
which is the target parallel abstraction shown in Figure 9. As in the previous case, such refac-
torings are normally tied to specific notations or tools, and cannot be reused for other similar
languages.

In the area of software modelling and MDE, two kinds of models are distinguished in [37]:
type and token models. The latter capture singular elements of a system (e.g. a road map is a
token model), and the former capture universal aspects of it through classification (e.g. a meta-
model is a type model). While a type model can be seen as an abstraction of the set of its valid
instance models, there is a lack of proposals – like the one we give here – for the systematic
abstraction of token models.

Related to model abstraction, model slicing has been proposed as a model comprehension
technique inspired by program slicing. It involves extracting a subset of a model, called a slice,
which retains some properties of interest. Slicers are typically bound to concrete meta-models,
for instance UML [39]. This technique can be seen as a particular case of our view abstraction,
when the obtained view conforms to the original meta-model. In [3], a language to define and
generate model slicers is proposed, but the obtained slicers are not reusable for different meta-
models in MDE.

There are also works that aim at the description of generic model refactorings [42]. Although
28

they do not explicitly deal with abstractions, they could be used to abstract models. However,
they lack constructs like mixins or hybrid concepts which we use to broaden the applicability of
abstractions. Similarly, [57] describes a comprehensive set of change patterns for process models
for the purpose of comparing the change frameworks provided by process-support technologies.
Some of the described patterns (e.g. Extract Sub Process) can be interpreted as abstractions. Our
work is especially directed to abstractions, and is not tied to process modelling languages, being
generic. While the goal of [57] is to provide a systematic comparison framework, our goal is to
offer automatic support for abstracting DSMLs in MDE. This is achieved through a catalogue of
abstractions, defined using concepts, which are reusable by means of bindings.

While there are works that use clustering techniques like FCA and RCA in MDE [1, 27], their
main purpose is to refactor class diagrams or meta-models in order to find a good inheritance
hierarchy of classes. Usually, the reason is that FCA needs boolean attributes, which in class
diagrams can be emulated by checking if classes define the same attribute (name and data type)
or not. There are few works aiming at generic, reusable implementations of clustering techniques
for MDE. In [12], the authors propose a generic mechanism (similar to our annotation models)
to use RCA/FCA for restructuring the inheritance hierarchy of meta-models. However, they
do not consider applying FCA to models for other purposes, and lack the possibility to define
equivalence classes and scaling operations for attribute values.

Abstraction has also been studied theoretically. Hobbs [26] suggests that, in the course of
reasoning, we conceptualize the world at different levels of granularity. He defines the notion of
indistinguishability that allows mapping a complex theory of the world to a simpler theory for a
particular context. This work has been used as a foundation to build theories about abstraction.
For example, in [16], an abstraction is defined as a surjective, computable function between two
first-order languages that preserves semantics. Granularity abstractions are defined as those non-
injective mappings collapsing several symbols into a unique, abstracted one. Abstraction has also
been used in many areas of Artificial Intelligence and Logic [17], e.g. to ease automated deduc-
tion. Keet [32] uses abstraction to help the comprehension of ontologies. In [41], granularity
abstraction is applied to natural language processing by representing natural language as logical
forms that are mapped to coarse-grained forms to enable sentence analysis. Kascheck [31] de-
velops a theory of abstraction for information systems introducing cohesion predicates (m-ary
relations) and abstractions of these (consistent n-ary relations, with n < m).

Henderson-Sellers and González-Pérez have explored these theories of abstraction and gran-
ularity for conceptual modelling [24, 25]. For example, in [25], they consider granularity for
whole/part, generalization and instantiation relations, and develop best-practices when adopting
a meta-model for method engineering.

The field of information and diagram visualization also makes use of abstraction techniques.
For example, in [14], the authors develop an ad-hoc semantic-zooming technique to ease the
navigation in complex UML diagrams, and some visual language editors like DiaGen enable the
definition of abstractions [36]. However, the only purpose of these abstractions is visualization
(i.e. they do not change the underlying model), they have to be manually programmed and are
not reusable across different languages.

Altogether, even though abstraction has been studied in many different fields, our work is
the first one proposing a rich set of mechanisms for the development of reusable abstractions for
modelling languages, in the context of MDE.

29

9. Conclusions and future work

In this paper, we have presented a set of techniques to define reusable abstractions, applicable
to several modelling languages in a meta-model independent way. Our abstractions are generic
operations defined over minimal concepts, to be bound to the meta-models of the modelling
languages. We support two types of concepts: structural, to be used when the concept and the
bound meta-models are structurally similar, and hybrid, which allows solving heterogeneities
between them in a flexible way. In addition, abstractions can be further configured by overriding
default hook methods for particular modelling notations. Abstraction operations can use generic
clustering techniques, which are configured through annotation models. We have presented two
such generic clustering techniques, which can be used as similarity criteria for abstractions of
arbitrary modelling languages. If the target modelling language lacks abstraction elements (e.g.
aggregate objects), they can be added through the application of mixins. Finally, we can also
obtain reusability for families of modelling languages by defining the abstractions over suitable
domain-specific meta-modelling languages.

We have presented a catalogue of horizontal abstractions, as well as domain-specific abstrac-
tions for Petri net like languages, process modelling and workflow languages. The approach is
implemented in the MetaDepth tool, which provides support for concept-based and multi-level
based genericity, as well as for the visualization of aggregate objects. To the best of our knowl-
edge, this is the first time that a systematic and generic support for reusable abstractions for
modelling language is proposed in the literature.

Altogether, our approach makes easier the incorporation of abstraction mechanisms to new
or existing modelling languages, in a non-intrusive way. Abstractions are defined once over a
suitable concept, and then can be reused by different meta-models, so that the effort to reuse one
of such abstractions is smaller than that of developing the abstraction from scratch. Moreover,
concepts provide a suitable, minimal interface to the abstraction operation, so that the developer
does not need to confront the complexity of the reused code, but he only needs to understand the
concept behind.

As future work, we plan to improve MetaDepth’s support for genericity, e.g. making the
binding more flexible. We also plan to explore the use of these techniques to define generic
model slicers, to extend our catalogue of abstractions and clustering techniques, and to include
mechanism for the detection of non-confluent abstraction applications. We are also working in
allowing multiple a-posteriori typing in multi-level modelling, permitting a more flexible multi-
level-based reusability.
Acknowledgements. Work funded by the Spanish Ministry of Economy and Competitivity with
project “Go Lite” (TIN2011-24139), and the R&D programme of Madrid Region with project
“eMadrid” (S2009/TIC-1650).

References

[1] G. Arévalo, J.-R. Falleri, M. Huchard, and C. Nebut. Building abstractions in class models: Formal concept analysis
in a model-driven approach. In MoDELS, volume 4199 of LNCS, pages 513–527. Springer, 2006.

[2] C. Atkinson and T. Kühne. Rearchitecting the UML infrastructure. ACM Trans. Model. Comput. Simul., 12(4):290–
321, 2002.

[3] A. Blouin, B. Combemale, B. Baudry, and O. Beaudoux. Modeling model slicers. In MoDELS’11, volume 6981
of LNCS, pages 62–76. Springer, 2011.

[4] E. M. Clarke, O. Grumberg, and D. E. Long. Model checking and abstraction. ACM Trans. Program. Lang. Syst.,
16(5):1512–1542, 1994.

[5] B. A. Davey and H. A. Priestley. Introduction to Lattices and Order (2. ed.). Cambridge University Press, 2002.
30

[6] J. de Lara and E. Guerra. Deep meta-modelling with MetaDepth. In TOOLS’10, volume 6141 of LNCS, pages
1–20. Springer, 2010. See also http://astreo.ii.uam.es/∼jlara/metaDepth.

[7] J. de Lara and E. Guerra. From types to type requirements: Genericity for model-driven engineering. Software and
Systems Modeling, page (in press), 2011.

[8] J. de Lara and E. Guerra. Domain-specific textual meta-modelling languages for model driven engineering. In
ECMFA12, volume 7349 of LNCS, pages 259–274. Springer, 2012.

[9] J. de Lara, E. Guerra, and J. S. Cuadrado. Abstracting modelling languages: A reutilization approach. In CAiSE’12,
volume 7328 of LNCS, pages 127–143. Springer, 2012.

[10] J. de Lara and H. Vangheluwe. Defining visual notations and their manipulation through meta-modelling and graph
transformation. J. Vis. Lang. Comput., 15(3-4):309–330, 2004.

[11] A. Egyed. Semantic abstraction rules for class diagrams. In ASE, pages 301–304, 2000.
[12] J.-R. Falleri, G. Arévalo, M. Huchard, and C. Nebut. Use of model driven engineering in building generic

FCA/RCA tools. In CLA, volume 331 of CEUR Workshop Proceedings, 2007.
[13] M. Fowler. Refactoring: Improving the Design of Existing Code. Addison-Wesley, Boston, MA, USA, 1999.
[14] M. Frisch, R. Dachselt, and T. Brückmann. Towards seamless semantic zooming techniques for UML diagrams.

In SOFTVIS, pages 207–208. ACM, 2008.
[15] E. Gamma, R. Helm, R. Johnson, and J. M. Vlissides. Design Patterns. Elements of Reusable Object-Oriented

Software. Addison Wesley, 1994.
[16] C. Ghidini and F. Giunchiglia. A semantics for abstraction. In ECAI, pages 343–347. IOS Press, 2004.
[17] F. Giunchiglia and T. Walsh. A theory of abstraction. Artif. Intell., 57(2-3):323–389, 1992.
[18] C. Gonzalez-Perez and B. Henderson-Sellers. A powertype-based metamodelling framework. Software and Sys-

tems Modeling, 5(1):72–90, 2006.
[19] E. Guerra, J. de Lara, and P. Dı́az. Visual specification of measurements and redesigns for domain specific visual

languages. J. Vis. Lang. Comput., 19(3):399–425, 2008.
[20] E. Guerra, J. de Lara, D. S. Kolovos, R. F. Paige, and O. M. dos Santos. transML: A family of languages to model

model transformations. In MoDELS’10, volume 6394 of LNCS, pages 106–120. Springer, 2010.
[21] E. Guerra, J. de Lara, A. Malizia, and P. Dı́az. Supporting user-oriented analysis for multi-view domain-specific

visual languages. Information & Software Technology, 51(4):769–784, 2009.
[22] D. Harel. Statecharts: A visual formalism for complex systems. Sci. Comput. Program., 8(3):231–274, 1987.
[23] D. Harel. On visual formalisms. Commun. ACM, 31(5):514–530, 1988.
[24] B. Henderson-Sellers. Random thoughts on multi-level conceptual modelling. In The Evolution of Conceptual

Modeling, volume 6520 of LNCS, pages 93–116. Springer, 2011.
[25] B. Henderson-Sellers and C. González-Pérez. Granularity in conceptual modelling: application to metamodels. In

ER, volume 6412 of LNCS, pages 219–232. Springer, 2010.
[26] J. Hobbs. Granularity. In IJCAI’85, pages 432–435. M. Kaufmann, 1985.
[27] M. Huchard, M. R. Hacene, C. Roume, and P. Valtchev. Relational concept discovery in structured datasets. Annals

of Mathematics and Artificial Intelligence, 49(1-4):39–76, Apr. 2007.
[28] S. Jablonski, B. Volz, and S. Dornstauder. A meta modeling framework for domain specific process management.

In COMPSAC’08, pages 1011 –1016. IEEE Computer Society, 2008.
[29] M. Jackson. Aspects of abstraction in software development. Software and Systems Modeling, 11(4):495–511,

2012.
[30] E. Juan, J. Tsai, T. Murata, and Y. Zhou. Reduction methods for real-time systems using delay time Petri nets.

IEEE Transactions on Software Engineering, 27(5):422 –448, 2001.
[31] R. Kaschek. A little theory of abstraction. In Modellierung, volume 45 of LNI, pages 75–92. GI, 2004.
[32] C. Keet. Enhancing comprehension of ontologies and conceptual models through abstractions. In AI*IA, volume

4733 of LNCS, pages 813–821. Springer, 2007.
[33] S. Kelly and J.-P. Tolvanen. Domain-Specific Modeling: Enabling Full Code Generation. Wiley-IEEE CS, 2008.
[34] D. S. Kolovos, R. F. Paige, and F. Polack. The Epsilon Object Language (EOL). In ECMDA-FA’06, volume 4066

of LNCS, pages 128–142. Springer, 2006.
[35] D. S. Kolovos, R. F. Paige, and F. Polack. The Epsilon Transformation Language. In ICMT’08, volume 5063 of

LNCS, pages 46–60. Springer, 2008.
[36] O. Köth and M. Minas. Structure, abstraction, and direct manipulation in diagram editors. In Diagrams, volume

2317 of LNCS, pages 290–304. Springer, 2002.
[37] T. Kühne. Matters of (meta-)modeling. Software and Systems Modeling, 5(4):369–385, 2006.
[38] T. Kühne and D. Schreiber. Can programming be liberated from the two-level style: multi-level programming with

deepJava. In OOPSLA, pages 229–244. ACM, 2007.
[39] K. Lano and S. Kolahdouz. Slicing techniques for UML models. Journal of Object Technology, 10:11:1–49, 2011.
[40] J. B. MacQueen. Some methods for classification and analysis of multivariate observations. In Proc. 5th Berkeley

Symposium on Mathematical Statistics and Probability, pages 281–297. University of California Press, 1967.

31

[41] I. Mani. A theory of granularity and its application to problems of polysemy and underspecification of meaning.
In KR’98, pages 245–255. M. Kaufmann, 1998.

[42] N. Moha, V. Mahé, O. Barais, and J. Jézéquel. Generic model refactorings. In MODELS’09, volume 5795 of LNCS,
pages 628–643. Springer, 2009.

[43] D. L. Moody and A. Flitman. A methodology for clustering entity relationship models - a human information
processing approach. In ER, volume 1728 of LNCS, pages 114–130. Springer, 1999.

[44] P. Mosterman and H. Vangheluwe. Computer automated multi-paradigm modeling: An introduction. Simulation,
80(9):433–450, 2004.

[45] T. Murata. Petri nets: Properties, analysis and applications. Proceedings of the IEEE, 77(4):541–580, Apr. 1989.
[46] OMG. OMG’s BPMN home page. http://www.bpmn.org/.
[47] OMG. UML 2.3 specification. http://www.omg.org/spec/UML/2.3/.
[48] A. Polyvyanyy, S. Smirnov, and M. Weske. The triconnected abstraction of process models. In BPM, volume 5701

of LNCS, pages 229–244, 2009.
[49] S. E. Schaeffer. Graph clustering. Computer Science Review, 1(1):27–64, 2007.
[50] B. Selic. A short catalogue of abstraction patterns for model-based software engineering. Int. J. Software and

Informatics, 5(1-2):313–334, 2011.
[51] P. Shoval, R. Danoch, and M. Balaban. Hierarchical entity-relationship diagrams: the model, method of creation

and experimental evaluation. Requir. Eng., 9(4):217–228, 2004.
[52] S. Smirnov, H. Reijers, and M. Weske. A semantic approach for business process model abstraction. In CAiSE’11,

volume 6741 of LNCS, pages 497–511, 2011.
[53] S. Smirnov, H. A. Reijers, M. Weske, and T. Nugteren. Business process model abstraction: a definition, catalog,

and survey. Distributed and Parallel Databases, 30(1):63–99, 2012.
[54] G. Sunyé, D. Pollet, Y. L. Traon, and J.-M. Jézéquel. Refactoring uml models. In UML, volume 2185 of LNCS,

pages 134–148. Springer, 2001.
[55] W. M. P. van der Aalst. Formalization and verification of event-driven process chains. Information & Software

Technology, 41(10):639–650, 1999.
[56] M. Völter and T. Stahl. Model-driven software development. Wiley, 2006.
[57] B. Weber, S. Rinderle, and M. Reichert. Change patterns and change support features in process-aware information

systems. In CAiSE’07, volume 4495 of LNCS, pages 574–588. Springer, 2007.
[58] M. Wynn, H. Verbeek, W. van der Aalst, A. ter Hofstede, and D. Edmond. Reduction rules for YAWL workflows

with cancellation regions and or-joins. Inf. & Softw. Techn., 51(6):1010–1020, 2009.

32

