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Abstract. Model-Driven Engineering automates the development of in-
formation systems. This approach is based on the use of Domain-Specific
Modelling Languages (DSMLs) for the description of the relevant aspects
of the systems to be built. The increasing complexity of the target sys-
tems has raised the need for abstraction techniques able to produce sim-
pler versions of the models, but retaining certain properties of interest.
However, developing such abstractions for each DSML from scratch is a
time and resource consuming activity.

Our solution to this situation is a number of techniques to build reusable
abstractions that are defined once and can be reused over families of
modelling languages sharing certain requirements. As a proof of con-
cept, we present a catalogue of reusable abstractions, together with an
implementation in the METADEPTH multi-level meta-modelling tool.

Keywords: Model-Driven Engineering, Domain-Specific Modelling Lan-
guages, Abstraction, Genericity

1 Introduction

In Model-Driven Engineering (MDE), models are actively used to conduct the
different phases of the project, being employed to specify, simulate, optimize,
test and produce code for the final systems. Models are sometimes specified
using general purpose modelling languages, like the UML, but in order to unfold
the full potential of MDE, Domain-Specific Modelling Languages (DSMLs) are
frequently used, specially tailored to specific areas of concern.

As the application domain becomes complex, models tend to become complex
as well. This fact hinders the development, understanding and analysis of models.
To tackle this issue, researchers have developed abstraction techniques to reduce
model complexity for particular notations and purposes [1-4]. In our setting,
an abstraction is a model operation that produces a simpler model that retains
certain properties of interest from the original model.

Frequently, different notations can be abstracted following similar patterns.
For example, a common abstraction consists on aggregating a linear sequence
of connected elements, which can be applied to a class diagram to flatten an
inheritance hierarchy, or to a process model to aggregate a sequence of activities.
Additionally, some abstractions are specific to particular domains. For example,



the abstractions for Petri nets [1] produce nets easier to analyse, but which
preserve liveness, safeness and boundedness. Similarly, there are abstractions
specific to process modelling [2, 3] which produce more comprehensible models
or facilitate their verification [4]. These abstractions are applicable (in theory)
to a family of notations sharing semantics, like BPMN and Activity Diagrams.

In MDE, the abstract syntax of DSMLs is defined through a meta-model and
the needed abstraction operations are defined over its elements. This enables the
application of the abstractions to the instances of a specific meta-model, but not
to the instances of other meta-models even if they share characteristics with the
former one. Therefore, even though one can develop abstractions for the meta-
model of a particular DSML, like the OMG’s BPMN 2.0, these cannot be used
for other related DSMLs, like YAWL [4], Activity Diagrams or other BPMN
variants. A catalog of abstractions and mechanisms for their reuse accross meta-
models would save significant effort in defining advanced DSML environments.

In previous works [5], we developed a technique for the reutilization of model
management operations. The basic idea is to introduce an extra level of indi-
rection, so that operations are not defined over concrete meta-models, but over
so-called concepts which gather the requirements that a meta-model should fulfil
so that the operation becomes applicable. In our approach concepts have the form
of meta-models as well, and operations defined over them become reusable, as
concepts can be bound to families of meta-models satisfying their requirements.

In this work we present reusable abstraction techniques for modelling lan-
guages in the context of MDE. For this purpose, we first introduce a classification
of abstractions for modelling languages, and then present a catalogue of generic,
reusable abstractions, applicable to sets of meta-models. We consider four ab-
straction types: aggregation, merge, deletion and view generation. Orthogonally,
each abstraction can be either horizontal if it is applicable to meta-models of
different domains, or domain-specific if it is applicable to families of meta-models
sharing semantics (e.g. languages similar to Petri nets or workflow languages).
Our abstractions are: (a) reusable, as they can be applied to several modelling
languages; (b) customizable, as some aspects can be configured, like similarity
criteria or attribute aggregation operations; and (¢) adaptable, as they provide
extension mechanisms for meta-models when a language lacks support for encap-
sulation or aggregation. We have validated these ideas by an implementation in
the METADEPTH tool [5], and several case studies (BPMN, Statecharts, DSMLs).
Paper organization. Section 2 introduces a categorization of abstractions for
modelling languages. Section 3 presents some techniques to define generic ab-
stractions, which we use to define a catalogue of reusable abstractions in Sec-
tion 4. Section 5 shows an implementation using METADEPTH. Section 6 com-
pares with related research and Section 7 concludes.

2 Classifying Abstractions for Modelling Languages

In this section we present a categorization of abstractions for modelling lan-
guages. This classification has been built after a thorough analysis of the ab-



stractions provided by or developed for languages of extended use like BPMN
[3], as well as from our own experience on the construction of DSMLs.

In our setting, a model abstraction is an operation that reduces the complex-
ity of some aspect of a model. In this way, the purpose of an abstraction can be to
increase the comprehensibility of a large model, or to reduce the size of a model
to ease its verification while retaining certain properties of interest, among oth-
ers. An abstraction may imply the deletion of existing model elements, as well
as the addition of new ones — like aggregate objects or hierarchical constructs —
that encapsulate existing elements which share certain features. The addition of
new elements may influence the way in which a model is visualized, e.g. enabling
to zoom-into or to hide the aggregated objects, but the focus of this work is not
on model visualization, which we touch only briefly in Section 5.

We distinguish two types of abstractions according to their applicability:

— Horizontal abstractions, applicable to modelling languages of (perhaps very)
different domains. For example, an abstraction that encapsulates a sequence
of model elements can be used to flatten a linear inheritance hierarchy in a
class diagram, or to simplify a business process model by creating a subpro-
cess that groups a sequence of consecutive activities.

— Domain-specific abstractions, specific to a family of DSMLs sharing seman-
tics. Examples of this kind of abstractions include the reduction techniques
for Petri nets [1] and the ones for workflows [4]. Being domain-specific, they
can take into account the semantics of the languages in the domain and
ensure the preservation of properties, which permits their use for verifica-
tion purposes. For example, the reduction techniques in [1] result in simpler
models that preserve liveness, safeness and boundedness.

Orthogonally, we identify four abstraction types according to their behaviour:

— Merge. In this kind of abstraction, a set of model elements considered similar
is replaced by one element of the same type which collects the properties of
the merged elements. A frequent use of this abstraction is for verification.
E.g. the reduction rules for Petri nets [1] merge groups of places or transitions
into a unique place or transition collecting the arcs of the merged elements.
In some cases, the element replacing the group is assigned property values
that result from a calculation using the properties of the merged elements.

— Aggregation. In this case, a set of similar model elements is grouped hier-
archically under a higher-level element, normally of a different type, which
serves as an aggregate. An example is the encapsulation of a linear sequence
of activities in a process model into a subprocess, obtaining a more com-
prehensible, hierarchical model. Properties of the aggregate object may be
calculated using properties of the aggregated objects.

— Deletion. This kind of abstraction deletes elements that are not considered
relevant or that do not modify some observed property of a model. An ex-
ample is the elimination of self-loops in Petri nets [1] and workflow nets [4].

— Views. In this case, the abstraction produces a new model (called view)
which may be expressed using the same language as the original model or a



different one. The view discards those features of the original model which
are irrelevant for the aim of the abstraction. This is the most general type
of abstraction as it includes the previous ones, whenever the languages of
the original model and the view are the same. There are many examples of
this type of abstraction for verification, where the view uses a language with
a rich body of theoretical results enabling the analysis of the source model.
Transforming BPMN models into Petri nets is an example of this abstraction

Once we have seen the different model abstraction types, next section dis-
cusses a possible approach to make abstractions reusable for several DSMLs.

3 Making Abstractions Generic

MDE is a type-centric approach because model manipulations use the types of
a concrete meta-model, becoming hard to reuse for other meta-models. In [5] we
introduced some mechanisms to define reusable model management operations,
which we review and apply to define generic model abstractions in the following.
Assume we need an operation to simplify a business process model by creating
an aggregate object abstracting the flow elements between two complementary
gateways (e.g. a parallel fork and join). Currently, there is a plethora of different
business process modelling notations like Activity diagrams, YAWL, the OMG’s
BPMN 2.0, and different variations of BPMN, like the Intalio’s BPM modeller’.
Hence, one needs to select a particular meta-model and implement the operation
for it, so that the operation is not applicable for the other meta-models anymore.
To overcome this limitation, we propose building a generic model abstraction
operation that can be applied to a family of meta-models. For this purpose, we
do not build the operation over the specific types of a meta-model, but over
the variable types defined in a so-called structural concept which gathers the
requirements that a meta-model should fulfil to qualify for the operation. Con-
cepts have the form of a meta-model, but their elements (classes, attributes and
references) are interpreted as variables. A generic operation is used by binding
its associated concept to a meta-model, as shown in Fig. 1. The binding defines
a 1-to-1 mapping from each class, attribute and reference in the concept to a
class, attribute and reference in the meta-model, respectively. It needs to follow
some well-formedness rules (see [5]) to ensure a correct application of the generic
operation. For example, if a class ¢ in the concept is bound to a class ¢’ in the
meta-model, the attributes and references in ¢ must be bound to features defined
in ¢’ or in some superclass of ¢’. We can map two classes ¢ and d in the concept to
a unique class in the meta-model provided it contains all features demanded by
c and d. Once defined, the binding induces a re-typing of the generic operation,
which becomes applicable to the instances of the bound meta-models, obtaining
reusability (the same operation becomes applicable to several meta-models).
As an example, Fig. 1 defines the generic abstraction abstractBlock using
the types of the concept Workflow. The operation creates an aggregate object ab-
stracting the flow elements between two complementary gateways. The concept

! http://www.intalio.com/bpms/designer
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Fig. 1. Generic model abstraction operation through a structural concept.

gathers the variable types used by the operation, like Gateway and Aggregate,
but note that it does not include a class representing a task (even though work-
flow languages usually include such a class) because the operation does not need
to distinguish any flow node other than gateways. In this way, the concept and
its bindings are kept as simple as possible. Then, we can bind the concept to
different meta-models, like those of the OMG’s BPMN 2.0 and the UML 2.0
Activity Diagrams, enabling the application of the abstraction operation to the
model instances of these notations. The figure shows an excerpt of the binding
for both meta-models. For BPMN, WNode is bound to FlowNode and WEdge to
SequenceFlow. The bindings permit certain heterogeneity in the subtyping, as
Aggregate is a direct subtype of WNode in the concept, but SubProcess is an
indirect subtype of FlowNode in the BPMN meta-model.

3.1 Configuration and adaptation to the modelling language

A structural concept has the form of a meta-model and reflects a design decision
that some meta-models could implement differently. For example, the Intalio’s
BPMN meta-model represents all kinds of flow nodes through a unique class
Activity with an attribute to discriminate the type. As a consequence, we
cannot bind the previous structural concept Workflow to this meta-model. Our
solution to widen the range of boundable meta-models for a generic operation is
to use so-called hybrid concepts [5], which abstract away the accidental details
introduced by the specific choice of structure in the concept behind a suitable
interface. Thus, hybrid concepts are like structural ones but require a number of
operations from the classes they define. The binding is then obtained by mapping
the elements and implementing the operations declared in the concept.

Fig. 2 shows the definition of the hybrid concept Workflow-2, which is a more
flexible version of the structural concept presented in Fig. 1, as it imposes less
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Fig. 2. Binding to Intalio’s BPMN meta-model with a hybrid concept.

structural requirements. This concept can be bound to the Intalio’s BPMN meta-
model, which requires implementing the operations required by the concept. For
instance, the figure shows the implementation of operation isAggregate, which
in this case returns true whenever the attribute activityType of an activity
takes the value SubProcess.

Finally, sometimes an abstraction needs to be configured with similarity cri-
teria or with a function over attribute values. These configuration points can
be expressed through hook operations in a hybrid concept as well. Hook opera-
tions provide a default implementation, and only need to be implemented during
the binding if a special behaviour is required. For instance, in Fig. 2, operation
aggregate in class WNode is a hook to customize an aggregation operation on
attributes (e.g. adding up a time attribute in all aggregated nodes).

3.2 Extending the modelling language

Some abstraction operations may create an aggregate object grouping similar
model elements. However, some notations were not designed with hierarchical
or encapsulation elements, and therefore we cannot apply these abstractions to
them. To overcome this limitation, our solution is to define a so-called mixin
layer, which is a parameterized meta-model that contains those auxiliary ele-
ments needed by an operation [5]. Then, we use concepts to express the require-
ments that a meta-model should fulfil to become extendible by the mixin.

As an example, the mixin in Fig. 3 adds an aggregate class to any meta-model
boundable to the Workflow-8 concept, which in this case does not demand the
existence of such a class. The generic operation is defined over the gluing of
the mixin and the concept (label 2 in the figure) through the extension points or
parameters of the mixin (label 1). In the figure, class WNode is the only parameter
of the mixin. The rest of elements of the mixin will be added to any meta-model
to which we can bind the concept. In this way, we can bind the concept to meta-
models like Petri nets, or to DSMLs to represent plant factories like the one
shown in the figure (label 3). Applying the mixin to the DSML (label 4) adds the
aggregate class to its meta-model, and hence the abstraction becomes applicable
to their instances. Moreover, this kind of mixin preserves the compatibility of
models conformant to the old meta-model with the extended one.
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Fig. 3. Generic model abstraction operations through a mixin.

Now that we have seen the different ways to make abstractions generic, cus-
tomizable and adaptable, we provide a catalogue of reusable abstractions, defined
using the presented techniques.

4 A Catalogue of Generic Abstractions

One of the aims of the present work is to make easier the incorporation of ab-
straction capabilities and operations to existing or new modelling languages, so
that these operations do not need to be developed from scratch. For this pur-
pose, based on the techniques presented in the previous section, we have built
a catalogue of generic abstractions that a designer can select and customise for
his particular modelling language. Our abstractions are generalizations of the
domain-specific ones we have found in the literature, and can easily be cus-
tomised for a particular modelling language by identifying the element types
participating in the abstraction. Additionally, some of them permit configuring
additional details through the use of hook methods (e.g. the similarity crite-
ria used to discriminate which elements of a model should be abstracted), or
present variations in their semantics (e.g. whether a set of elements should be
either encapsulated in an aggregate object or merged).

Technically, our generic abstractions are operations defined over suitable con-
cepts to be bound to the meta-models of specific modelling languages. To increase
the reuse opportunities of each abstraction type, we provide different binding
possibilities for them: (i) from a structural concept, which is the simplest ap-
proach when the structures of the concept and the meta-model are similar, (ii)
from a hybrid concept, which gives freedom regarding the particular structure of
the bound meta-model, and (iii) from a concept associated to a mixin in case the



bound meta-model has no support for abstractions, e.g. it lacks a class to repre-
sent object aggregations, in which case the mixin extends the meta-model with
such a class, enabling the abstraction application. Internally, for each abstraction
type we have defined a binding from its hybrid to its structural concept, which
permits encoding the abstraction operation just once over the hybrid concept
and reusing it for the structural one. In any case, this is transparent to the reuser
of the abstraction. Finally, we provide two implementations for each abstraction
operation: (i) one performing the abstraction on the input model in-place, and
(ii) another one generating a view (i.e. a different model) with the result.

In the remaining of this section we present our catalogue of abstractions,
classified depending on their applicability: horizontal (i.e. general) and domain-
specific. We do not claim that this catalogue is complete, as we expect to add new
abstractions in the future. Nonetheless, we will show some examples illustrating
that our current catalogue can be used to customize meaningful abstractions for
well-known notations.

4.1 Horizontal abstractions

Target parallel. It abstracts a maximal set of objects that refer to the same
target objects. There are two variants of this abstraction: aggregate and
merge. The aggregate variant creates an aggregate that encapsulates all ob-
jects with same target, whereas the merge variant replaces the parallel ob-
jects by another one of the same type. In both cases, all original references
are substituted by non-duplicate references from the created abstraction.
To use this abstraction, a binding has to be provided from the associated
concept (either structural, hybrid or mixin-based if the target meta-model
does not define an aggregate class) to a meta-model. Fig. 4 shows to the left
the structural concept for the aggregate variant of this abstraction. Hence,
the abstraction can be reused for a particular notation by specifying the
type of the objects to abstract (class Item), the referenced target (class
Context and reference target), and the aggregation elements (Aggregate
and child). The concept includes a hook method canAggregate to configure
extra conditions that the abstracted elements need to fulfill. The right of
the same figure shows the working scheme of this abstraction, where three
objects are aggregated as all refer to the same target objects (which in this
case is only one) and their references to the target object are substituted by
a unique reference from the created aggregate. Later, a particular tool may
decide whether showing or not the objects inside the aggregate.

Fig. 5 shows an application of this abstraction over UML 2.0 Statecharts,
to encapsulate sets of states that reach a same state through a same trig-
ger (i.e. it performs an unflattening of statecharts). The left of the figure
shows an excerpt of the UML Statecharts meta-model (simplified as it does
not include Regions). We have depicted the binding through annotations.
Hence, Item and Context in the concept are both bound to Vertex in the
meta-model as we want to detect states connected to the same states. We
have parameterized the abstraction by overriding operation canAggregate
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Fig. 4. Target parallel aggregation abstraction: concept (left) and behaviour (right).

to include only target states with the same Trigger. In fact, we have used
the hybrid version of the concept for this abstraction, as states are not con-
nected to states through a reference (as demanded by the structural concept)
but through an intermediate class Transition. The right of Fig. 5 shows the
in-place application of this unflattening to a Statechart, which abstracts all
states with a transition triggered by “e” to S4.
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Source parallel. It abstracts a maximal set of objects which is referenced from
the same source objects. Thus, this abstraction is like the previous one, but
considers input parallel objects instead of target ones. The concept to bind in
this case is therefore similar to the target parallel one, but there is a reference
source from class Context to Item instead of the reference target.

Parallel. It abstracts a maximal set of objects with the same source and target
elements. The concept for this abstraction is shown to the left of Fig. 6 in
its variant merge (i.e. the abstracted items are substituted by another item).
There are also structural and hybrid versions of this concept for the aggregate
variant, which include a class Aggregate. The middle of the figure shows
an application of this abstraction to the meta-model of (non-deterministic)
automata. The aim is simplifying automata by merging sets of equivalent
states, which are those that can reach, and can be reached from, the same
states through transitions with the same symbols. In such a case, we can
merge the equivalent states and obtain a simpler automaton which preserves
behaviour, as the figure illustrates to the right. For this purpose, we bind all
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classes in the concept to class State, and override the canAggregateS and
canAggregateT hook methods to check that transitions to/from the same
states have the same symbol. As in the previous example, we have used the
hybrid version of the concept because states are inter-connected through the
intermediate class Transition, not directly through a reference.

Parallel merge structural concept
Item

canAggregateS(SourceContext): boolean
canAggregateT(TargetContext): boolean

* e
Transition
* symbol: char

State 1
name: String ‘
initial: boolean :
final: boolean |-~ |tem !

tar

source /]\ * arget \L .
Source Target SourceContext @ A @ ) @
Context Context TargetContext

Fig. 6. Parallel merge abstraction: concept (left), binding to non-deterministic au-
tomata (middle), and application (right).

Sequential. It abstracts a maximal sequence of linearly connected objects, and
admits both variants merge and aggregate. The left of Fig. 7 shows the struc-
tural concept for the sequential aggregate variant, and the center of the figure
illustrates how the abstraction works: it creates an aggregate for a sequence
of items, and copies the connections of the first and last item of the sequence
to the aggregate. The figure shows to the right an application to BPMN 2.0,
where we have mapped Item to FlowNode and Aggregate to SubProcess
(see Fig. 1). Moreover, we have customized the canAggregate hook method
to forbid having gateways as first or last element in the abstracted sequence.

next
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Fig. 7. Sequential aggregation abstraction: concept (left), behaviour (middle) and ap-
plication to BPMN (right).

Similarity. It abstracts a maximal set of objects considered similar by a custom-
defined operation. The left of Fig. 8 shows the structural concept for the
aggregate variant of this abstraction. The right of the figure shows an example
application to BPMN 2.0 models. As in the abstraction heuristic presented
in [3], tasks are considered similar if they produce or consume the same
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sets of Data Objects and use the same resources (in the model example,
they are performed by the same HumanPerformer). Thus, we configure this
abstraction by binding class Item in the concept to FlowNode, Aggregate
to SubProcess, and implementing the isSimilarTo hook method.
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Fig. 8. Similarity aggregation abstraction: concept (left), application to BPMN (right).

Facilitator

Facilitator

Loop removal. It removes loops between two types of objects. The associated
concept is shown in Fig. 9(a). We consider two variants: the first removes
one of the references (source or target) to break the loop, whereas the
other one removes the object with type Item and its references. The second
variant is illustrated in Fig. 9(b). Fig. 9(c) shows an application of this ab-
straction that simplifies Petri nets, while preserving their behaviour, through
the elimination of self-loop places [1]. Thus, a place is removed if it has at
least one token and has no further input or output arcs. Fig. 9(d) shows
an application to YAWL nets [4] that eliminates self-loop tasks. A different
binding into YAWL would enable the elimination of self-loop conditions [4].

Loop removal str. concept

Item
canRemove(): boolean ‘ ﬁ $
source /\ taretl/* T ¢ I$
‘ Context‘ ‘ Context‘

(a)

~

Fig. 9. Loop removal abstraction: concept (a), behaviour (b), application to Petri nets
(c) and application to YAWL nets (d).

4.2 Domain-specific abstractions

Oftentimes, abstractions are specifically designed for a particular domain, such
as Petri nets [1] or process models [3,4]. Defining them over concepts makes
them meta-model independent, and therefore reusable for other languages with
similar semantics. For example, Fig. 1 shows the concept Workflow for process
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modelling languages, which expresses the requirements for the block abstraction
operation. This abstraction aggregates into a subprocess a block delimited by two
complementary gateways. An example application of this abstraction to BPMN
is shown in Fig. 10.

If an abstraction for a particular domain is complex, we can certainly build
it by reusing and customizing horizontal abstractions (like the ones in our cata-
logue). However, then it is sensible to specialize it as a domain-specific abstrac-
tion over a concept that reflects the particularities of the domain and can be
bound to languages with close semantics without much configuration effort. For
instance, once we have built the similarity abstraction that aggregates activities
sharing data and resources (cf. Fig. 8), we can specialize it for their reuse for
any workflow language. For this purpose, we would redefine the abstraction op-
eration over a concept like the one in Fig. 1 but extended with tasks, resources
and data objects. This concept (and abstraction) becomes easily reusable for
families of process languages, like BPMN and Activity Diagrams.

5 Tool Support

The approach and abstractions presented in this paper have been implemented
and validated using METADEPTH, a meta-modelling framework which supports
multi-level meta-modelling and textual modelling [5]. It is integrated with the
Epsilon family of languages?, which permits defining in-place model manipula-
tions, model-to-model transformations and code generators. All these operations
can be made generic by their definition over (structural or hybrid) concepts or
mixins. Moreover, we have extended METADEPTH’s genericity support with the
possibility of defining hook methods with default implementations in concepts.

Concepts, mixins and bindings are specified textually in METADEPTH. As
an example, Listing 1 shows the definition of the structural concept shown in
Fig. 1. The definition of a concept is similar to a meta-model definition, but
its elements are considered variables and their definition is preceded by “&”.
The concept has a list of parameters (lines 2-3) in order to ease the binding to
meta-models, as we will see later.

concept Workflow
(&M, &WNode, &WEdge, &Aggregate,
& Gateway, &child, &src, &tar) {
Model &M {

abstract Node &WNode {}

Node &WEdge {
&src : &WNode;
&tar : &WNode;

}
Node &Aggregate : &WNode {
&child : &WNode[x];

}
Node &Gateway : &WNode {}

}
}

Listing 1. Structural concept.

2 http://eclipse.org/gmt/epsilon/

operation blockAbstraction() : Boolean {
var comp : &WNode = null;
for (gw in &WNode.alllnstances())
if (gw.isSplit()) {
comp := getJoin(gw);
if (comp<>null) {
var sq : Sequence(&WNode);
sq.addAll(getAlllnBetween(gw, comp));
createAggregateFor(sq, gw, comp);
return true;

}

return false;

}

Listing 2. Block abstraction operation.
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Once the concept is defined, we can build operations that use the vari-
able types defined in the concept. In METADEPTH, the abstraction operations
that modify the models in-place are defined using the Epsilon Object Language
(EOL), whereas the viewrgenerating abstraction operations are defined with the
Epsilon Transformation Language (ETL). Listing 2 shows an excerpt of the
block abstraction operation using EOL (auxiliary operations and methods are
not shown), which uses the types of the Workflow concept of Listing 1.

Finally, in order to apply the generic operation, a binding from the concept
to a specific meta-model needs to be specified. Listing 3 shows the binding of the
concept in Listing 1 to the meta-model of BPMNZ2.0. In this case, the SubProcess
type of BPMN acts as aggregate (fourth parameter of the binding, corresponding
to the &Aggregate variable of the concept).

bind Workflow ( BPMN, BPMN::FlowNode, BPMN::SequenceFlow,

BPMN::SubProcess, BPMN::Gateway, BPMN::FlowElementsContainer::flowElements,
BPMN::SequenceFlow::sourceRef, BPMN::SequenceFlow::targetRef )

Listing 3. Binding to meta-model.

The user of a generic abstraction only has to define the binding from the
concept to his modelling language. The binding in Listing 3 allows for the reuse
of the block abstraction operation, which consists of 200 lines of EOL code.
Thus, the user has to specify fewer lines of code (3) to benefit from a proven
abstraction operation. Actually, the real definition of our Workflow concept is
slightly larger and has associated further domain-specific abstractions, so that
the reuse opportunities are larger. Moreover, the user of the abstraction is not
confronted with understanding the code being reused and a subsequent manual
adaptation of the operation for a particular meta-model, which is error-prone.
Instead, he only deals with the operation “interface” (the concept), and so the
different elements in the concept become similar to roles in design patterns.

So far we have considered abstractions at the abstract syntax level. However,
modelling languages have a concrete syntax, typically a graphical one. When an
abstraction is applied, the visualization has to be updated accordingly. As a proof
of concept, we have built a visualization engine for METADEPTH models with
support for grouping together elements into aggregate objects. We have created
a meta-model to define graphical concrete syntaxes which includes the notion
of grouping. Hence, in order to define the visualization of a language, a simple
mapping from its meta-model to our graphical syntax meta-model must be given.
For those elements added by a mixin to a meta-model (and which therefore are
not defined in the meta-model) we use a generic visualization. Then, our engine
interprets concrete syntax models and renders their visualization with the jGraph
library. Fig. 10 shows the application of the block abstraction to a BPMN model.

6 Related work

Abstraction has been recognized as one of the key techniques for the model-based
engineering of software and systems in the field of multi-paradigm modelling [6].
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Fig. 10. Example of a BPMN model, before and after applying an abstraction.

However, to our knowledge, there are no works aimed at systematizing and
providing a framework to reuse abstractions for DSMLs in MDE.

Two kinds of models are distinguished in [7]: type and token models. The
latter capture singular elements of a system (e.g. a road map is a token model),
and the former capture universal aspects of it through classification (e.g. a meta-
model is a type model). While a type model can be seen as an abstraction of
the set of its valid instance models, there is a lack of proposals — like the one we
give here — for systematic abstraction of token models.

Model slicing has been proposed as a model comprehension technique inspired
by program slicing. It involves extracting a subset of a model, called a slice, which
retains some properties of interest. Slicers are typically bound to concrete meta-
models, for instance UML [10]. This technique can be seen as a particular case
of our view abstraction, when the obtained view conforms to the original meta-
model. In [11], a language to define and generate model slicers is proposed, but
the obtained slicers are not reusable for different meta-models in MDE.

There are also works that aim at the description of generic model refactor-
ings [12]. Although they do not explicitly deal with abstractions, they could
be used to abstract models. However, they lack constructs like mixins or hy-
brid concepts which we use to broaden the applicability of abstractions. Simi-
larly, [13] describes a comprehensive set of change patterns for process models for
the purpose of comparing the change frameworks provided by process-support
technologies. Some of the described patterns (e.g. Extract Sub Process) can be
interpreted as abstractions. Our work is especially directed to abstractions, and
is not tied to process modelling languages, being generic. While the goal of [13]
is to provide a systematic comparison framework, our goal is to offer automatic
support for abstracting DSMLs in MDE. This is achieved through a catalogue of
abstractions, defined using concepts, which are reusable by means of bindings.

Most abstraction techniques are specifically designed for particular notations.
For example, there are techniques tailored for abstracting process models in
BPMN [3]. Abstractions are also heavily used in verification [1] to obtain simpler
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models. However, their implementation is frequently tied to the specificities of a
language, and is hardly reusable even for similar notations.

Abstraction has also been studied theoretically. Hobbs [14] suggests that, in
the course of reasoning, we conceptualize the world at different levels of gran-
ularity. He defines the notion of indistinguishability that allows us to map a
complex theory of the world to a simpler theory for a particular context. This
work has been used as a foundation to build theories about abstraction. For
example, in [15], an abstraction is defined as a surjective, computable function
between two first-order languages that preserves semantics. Granularity abstrac-
tions are defined as those non-injective mappings collapsing several symbols into
a unique, abstracted one. Abstraction has also been used in many areas of Ar-
tificial Intelligence and Logic [16], e.g. to ease automated deduction. Keet [17]
uses abstraction to help the comprehension of ontologies. In [18], granularity
abstraction is applied to natural language processing. Natural language is rep-
resented as logical forms that are mapped to coarse-grained forms to enable
sentence analysis. Kascheck [19] develops a theory of abstraction for information
systems introducing cohesion predicates (m-ary relations) and abstractions of
these (consistent n-ary relations, with n < m).

Henderson-Sellers and Gonzalez-Pérez have explored these theories of ab-
straction and granularity for conceptual modelling [8, 9]. For example, in [8], they
consider granularity for whole/part, generalization and instantiation relations,
and develop best-practices when adopting a meta-model for method engineering.

The field of information and diagram visualization also makes use of abstrac-
tion techniques. For example, in [20], the authors develop an ad-hoc semantic-
zooming technique to ease the navigation in complex UML diagrams, and some
visual language editors like DIAGEN enable the definition of abstractions [21].
However, the only purpose of these abstractions is visualization (i.e. they do not
change the underlying model), they have to be manually programmed and are
not reusable across different languages.

Altogether, even though abstraction has been studied in many different fields,
our work is the first one proposing mechanisms for the development of reusable
abstractions for modelling languages, in the context of MDE.

7 Conclusions and future work

In this paper, we have used generic techniques to define reusable abstractions,
applicable to several modelling languages in a meta-model independent way.
We have presented a catalogue of horizontal abstractions and domain-specific
ones for process modelling languages. We have implemented the approach in the
METADEPTH tool, which provides support for visualization of aggregate objects.

As future work, we plan to improve METADEPTH’s support for genericity, e.g.
making the binding more flexible. We also plan to explore the use of these tech-
niques to define generic model slicers, to extend our catalogue of abstractions,
and to provide built-in support for similarity techniques (e.g., Formal Concept
Analysis) and for detecting non-confluent abstraction applications.
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